Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Med Genet B Neuropsychiatr Genet ; 195(3): e32966, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37921405

ABSTRACT

Valproate is among the most prescribed drugs for bipolar disorder; however, 87% of patients do not report full long-term treatment response (LTTR) to this medication. One of valproate's suggested mechanisms of action involves the brain-derived neurotrophic factor (BDNF), expressed in the brain areas regulating emotions, such as the prefrontal cortex. Nonetheless, data about the role of BDNF in LTTR and its implications in the structure of the dorsolateral prefrontal cortex (dlPFC) is scarce. We explore the association of BDNF variants and dorsolateral cortical thickness (CT) with LTTR to valproate in bipolar disorder type I (BDI). Twenty-eight BDI patients were genotyped for BDNF polymorphisms rs1519480, rs6265, and rs7124442, and T1-weighted 3D brain scans were acquired. LTTR to valproate was evaluated with Alda's scale. A logistic regression analysis was conducted to evaluate LTTR according to BDNF genotypes and CT. We evaluated CT differences by genotypes with analysis of covariance. LTTR was associated with BDNF rs1519480 and right dlPFC thickness. Insufficient responders with the CC genotype had thicker right dlPFC than TC and TT genotypes. Full responders reported thicker right dlPFC in TC and TT genotypes. In conclusion, different patterns of CT related to BDNF genotypes were identified, suggesting a potential biomarker of LTTR to valproate in our population.


Subject(s)
Bipolar Disorder , Humans , Bipolar Disorder/drug therapy , Bipolar Disorder/genetics , Valproic Acid/pharmacology , Valproic Acid/therapeutic use , Brain-Derived Neurotrophic Factor/genetics , Brain , Genotype
2.
Psychiatry Res Neuroimaging ; 317: 111382, 2021 11 30.
Article in English | MEDLINE | ID: mdl-34482053

ABSTRACT

Valproate compositions are frequently used to treat bipolar disorder (BD); however, 87% of patients do not report full response in the long-term. There is scarce information about the clinical features and brain structural characteristics of long-term treatment response (LTTR) to this medication. In this study, we aim to evaluate the clinical characteristics and prefrontal cortical thickness (CT) of LTTR to valproate in BD. We evaluated 30 BD outpatients on valproate treatment, and 20 controls with a 3T T1-weighted 3D brain scan and Alda's scale for LTTR. An analysis of covariance was used to evaluate CT measures and a logistic regression was conducted to predict the full response (FR) using clinical features and CT measures. Patients with an insufficient response (IR) reported thinner right frontal eye fields, anterior and dorsolateral prefrontal cortexes compared with controls. FR patients presented thicker right dorsolateral prefrontal cortex than IR and no differences with controls. Patients with mixed features presented increased odds of achieving FR, while CT measures reported non-significant results. This is the first study to report mixed features as a clinical predictor of valproate LTTR. Our findings also suggest better preservation of the right prefrontal cortex of subjects with FR to valproate.


Subject(s)
Bipolar Disorder , Valproic Acid , Bipolar Disorder/diagnostic imaging , Bipolar Disorder/drug therapy , Cerebral Cortex , Humans , Magnetic Resonance Imaging/methods , Prefrontal Cortex/diagnostic imaging , Valproic Acid/therapeutic use
3.
Neuropsychiatr Dis Treat ; 16: 1199-1206, 2020.
Article in English | MEDLINE | ID: mdl-32494139

ABSTRACT

PURPOSE: Bipolar disorder (BD) is a condition associated with structural alterations in the prefrontal cortex (PFC); some genetic variants and mood stabilizer medications like lithium or valproate are associated with these changes. CACNA1C is a gene involved in BD pathology and brain function; carriers of the A allele of rs1006737 are reported to have increased risk for BD and increased cortical thickness (CT) in the PFC compared to non-carriers. Lithium is also associated with increased CT in the PFC of BD subjects compared to the ones on valproate. The influence of these treatments and gene variants over the PFC structure of Mexican subjects has not been explored. Therefore, we evaluate the effects of mood stabilizers and risk A allele of CACNA1C rs1006737 on the prefrontal cortical thickness of Mexican BD patients treated with lithium or valproate. PATIENTS AND METHODS: A cross-sectional study of 40 BD type I euthymic adult outpatients (20 treated with lithium and 20 with valproate) who underwent a 3T T1-weighted 3D brain scan and genotyping for CACNA1C risk allele rs1006737 was conducted. We performed a cortical thickness analysis of the dorsolateral and orbitofrontal regions of the prefrontal cortex with BrainVoyager 20.6. The effects of treatment and gene variants were analyzed with a two-way multivariate analysis of covariance. RESULTS: There was no association of CACNA1C risk allele rs1006737 with CT measures of both PFCs nor significant interaction between the genetic variant and treatment. Mood stabilizers reported the main effect on the CT measures of the right PFC of our sample. Patients on treatment with lithium showed higher mean CT on the right orbitofrontal cortex. CONCLUSION: We did not find any association between the prefrontal CT and CACNA1C risk A allele rs1006737 in BD Mexican patients treated with lithium or valproate. Our results suggest that mood stabilizers had the main effect in the CT of the right PFC.

SELECTION OF CITATIONS
SEARCH DETAIL
...