Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 22(28): 16125-16135, 2020 Jul 22.
Article in English | MEDLINE | ID: mdl-32638784

ABSTRACT

Deep Eutectic Solvents (DESs) are hygroscopic liquids composed of a hydrogen bond donor (HBD) and acceptor (HBA). Their physical, chemical and electrochemical properties can be tailored to use them as solvents for different applications, i.e. electrodeposition, catalysis, extraction, etc. This can be done by changing the HBD, as well by adding water. However, the interrelated influence of H2O and HBD on the structure of the electrolyte, and on the behavior of the active species is not fully understood. In this work, we select nickel electrodeposition as a case study and we combine electrochemical techniques (cyclic voltammetry, chronoamperometry) with UV-vis spectroscopy and molecular dynamics to understand the influence of water and HBD on the electrochemical behaviour of DESs. The unique combination of these different experimental and modelling techniques provides new insights into the field. The addition of H2O changes, not only the interactions between the constituents of the liquid, but also the coordination of metal cations, which is reflected in the electrochemical performance of different DESs. More importantly, we show that, in the presence of very little (between 0.1 wt% and 2.8 wt%) and high (>4.5 wt%) water contents, DESs behave differently, and the changes in their electrochemical behavior are caused by both the complexation of metal cations and the electrolyte transport properties.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 188: 507-515, 2018 Jan 05.
Article in English | MEDLINE | ID: mdl-28759852

ABSTRACT

In the last decades the speciation of the cobalt complex in a glass matrix has been extensively studied. Bivalent cobalt ions in glasses of different composition commonly adopt a tetrahedral coordination, though hexa- or penta-coordinated species are also possible. Changes in the absorbance spectrum of Co-doped glasses were attested in previous studies according to the introduction of different modifying cations. A shifting of the first sub-band characterizing the typical triplets of tetrahedral Co2+ ions in both the visible and near infrared regions was observed, but discrepancies in literature suggested a relevant role of glass composition on the definition of the optical signature of cobalt. Co-doped glasses with different composition (soda-lime, potash-lime, mixed alkali and ZnO-Na2O-CaO-SiO2) were studied via Fiber Optic Reflectance Spectroscopy (FORS). Pseudo-Voigt functions were used for the deconvolution of the absorbance spectra and the features of the bands characteristic of each cobalt complex were investigated. The structural role played by each modifying cation and the fundamental implications of glass basicity on the speciation of different Co-complexes were stressed. Changes in glass structure resulted in different equilibria between the three absorbing species whose specific optical signatures in the 480-530nm region interact to determine the resulting absorbance spectrum.

SELECTION OF CITATIONS
SEARCH DETAIL
...