Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926574

ABSTRACT

Despite being the dominant force of nature on large scales, gravity remains relatively elusive to precision laboratory experiments. Atom interferometers are powerful tools for investigating, for example, Earth's gravity1, the gravitational constant2, deviations from Newtonian gravity3-6 and general relativity7. However, using atoms in free fall limits measurement time to a few seconds8, and much less when measuring interactions with a small source mass2,5,6,9. Recently, interferometers with atoms suspended for 70 s in an optical-lattice mode filtered by an optical cavity have been demonstrated10-14. However, the optical lattice must balance Earth's gravity by applying forces that are a billionfold stronger than the putative signals, so even tiny imperfections may generate complex systematic effects. Thus, lattice interferometers have yet to be used for precision tests of gravity. Here we optimize the gravitational sensitivity of a lattice interferometer and use a system of signal inversions to suppress and quantify systematic effects. We measure the attraction of a miniature source mass to be amass = 33.3 ± 5.6stat ± 2.7syst nm s-2, consistent with Newtonian gravity, ruling out 'screened fifth force' theories3,15,16 over their natural parameter space. The overall accuracy of 6.2 nm s-2 surpasses by more than a factor of four the best similar measurements with atoms in free fall5,6. Improved atom cooling and tilt-noise suppression may further increase sensitivity for investigating forces at sub-millimetre ranges17,18, compact gravimetry19-22, measuring the gravitational Aharonov-Bohm effect9,23 and the gravitational constant2, and testing whether the gravitational field has quantum properties24.

2.
Nature ; 572(7770): 511-515, 2019 08.
Article in English | MEDLINE | ID: mdl-31435056

ABSTRACT

Lithium metal anodes offer high theoretical capacities (3,860 milliampere-hours per gram)1, but rechargeable batteries built with such anodes suffer from dendrite growth and low Coulombic efficiency (the ratio of charge output to charge input), preventing their commercial adoption2,3. The formation of inactive ('dead') lithium- which consists of both (electro)chemically formed Li+ compounds in the solid electrolyte interphase and electrically isolated unreacted metallic Li0 (refs 4,5)-causes capacity loss and safety hazards. Quantitatively distinguishing between Li+ in components of the solid electrolyte interphase and unreacted metallic Li0 has not been possible, owing to the lack of effective diagnostic tools. Optical microscopy6, in situ environmental transmission electron microscopy7,8, X-ray microtomography9 and magnetic resonance imaging10 provide a morphological perspective with little chemical information. Nuclear magnetic resonance11, X-ray photoelectron spectroscopy12 and cryogenic transmission electron microscopy13,14 can distinguish between Li+ in the solid electrolyte interphase and metallic Li0, but their detection ranges are limited to surfaces or local regions. Here we establish the analytical method of titration gas chromatography to quantify the contribution of unreacted metallic Li0 to the total amount of inactive lithium. We identify the unreacted metallic Li0, not the (electro)chemically formed Li+ in the solid electrolyte interphase, as the dominant source of inactive lithium and capacity loss. By coupling the unreacted metallic Li0 content to observations of its local microstructure and nanostructure by cryogenic electron microscopy (both scanning and transmission), we also establish the formation mechanism of inactive lithium in different types of electrolytes and determine the underlying cause of low Coulombic efficiency in plating and stripping (the charge and discharge processes, respectively, in a full cell) of lithium metal anodes. We propose strategies for making lithium plating and stripping more efficient so that lithium metal anodes can be used for next-generation high-energy batteries.

SELECTION OF CITATIONS
SEARCH DETAIL
...