Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Reprod ; 94(4): 86, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26864198

ABSTRACT

Traditionally, research in the field of trace element biology and human and animal health has largely depended on epidemiological methods to demonstrate involvement in biological processes. These studies were typically followed by trace element supplementation trials or attempts at identification of the biochemical pathways involved. With the discovery of biological molecules that contain the trace elements, such as matrix metalloproteinases containing zinc (Zn), cytochrome P450 enzymes containing iron (Fe), and selenoproteins containing selenium (Se), much of the current research focuses on these molecules, and, hence, only indirectly on trace elements themselves. This review focuses largely on two synchrotron-based x-ray techniques: X-ray absorption spectroscopy and x-ray fluorescence imaging that can be used to identify the in situ speciation and distribution of trace elements in tissues, using our recent studies of bovine ovaries, where the distribution of Fe, Se, Zn, and bromine were determined. It also discusses the value of other techniques, such as inductively coupled plasma mass spectrometry, used to garner information about the concentrations and elemental state of the trace elements. These applications to measure trace elemental distributions in bovine ovaries at high resolutions provide new insights into possible roles for trace elements in the ovary.


Subject(s)
Ovary/metabolism , Trace Elements/metabolism , Animals , Bromine/metabolism , Female , Iron/metabolism , Ovary/chemistry , Reproduction , Selenium/metabolism , Trace Elements/analysis , X-Ray Absorption Spectroscopy , Zinc/metabolism
2.
Microsc Microanal ; 21(3): 695-705, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25850937

ABSTRACT

X-ray fluorescence (XRF) was used to image 40 histological cross-sections of bovine ovaries (n=19), focusing on structures including: antral follicles at different stages of growth or atresia, corpora lutea at three stages of development (II-IV), and capillaries, arterioles, and other blood vessels. This method identified three key trace elements [iron (Fe), zinc (Zn), and selenium (Se)] within the ovarian tissue which appeared to be localized to specific structures. Owing to minimal preprocessing of the ovaries, important high-resolution information regarding the spatial distribution of these elements was obtained with elemental trends and colocalizations of Fe and Zn apparent, as well as the infrequent appearance of Se surrounding the antrum of large follicles, as previously reported. The ability to use synchrotron radiation to measure trace element distributions in bovine ovaries at such high resolution and over such large areas could have a significant impact on understanding the mechanisms of ovarian development. This research is intended to form a baseline study of healthy ovaries which can later be extended to disease states, thereby improving our current understanding of infertility and endocrine diseases involving the ovary.


Subject(s)
Iron/analysis , Optical Imaging/methods , Ovary/anatomy & histology , Ovary/chemistry , Selenium/analysis , Trace Elements/analysis , Zinc/analysis , Animals , Cattle , Female , X-Rays
3.
Metallomics ; 7(5): 756-65, 2015 May.
Article in English | MEDLINE | ID: mdl-25675086

ABSTRACT

Bromine is one of the most abundant and ubiquitous trace elements in the biosphere and until recently had not been shown to perform any essential biological function in animals. A recent study demonstrated that bromine is required as a cofactor for peroxidasin-catalysed formation of sulfilimine crosslinks in Drosophila. In addition, bromine dietary deficiency is lethal in Drosophila, whereas bromine replenishment restores viability. The aim of this study was to examine the distribution and speciation of bromine in mammalian tissues and fluids to provide further insights into the role and function of this element in biological systems. In this study we used X-ray fluorescence (XRF) imaging and inductively coupled plasma-mass spectrometry (ICP-MS) to examine the distribution of bromine in bovine ovarian tissue samples, follicular fluid and aortic serum, as well as human whole blood and serum and X-ray absorption spectroscopy (XAS) to identify the chemical species of bromine in a range of mammalian tissue (bovine, ovine, porcine and murine), whole blood and serum samples (bovine, ovine, porcine, murine and human), and marine samples (salmon (Salmo salar), kingfish (Seriola lalandi) and Scleractinian coral). Bromine was found to be widely distributed across all tissues and fluids examined. In the bovine ovary in particular it was more concentrated in the sub-endothelial regions of arterioles. Statistical comparison of the near-edge region of the X-ray absorption spectra with a library of bromine standards led to the conclusion that the major form of bromine in all samples analysed was bromide.


Subject(s)
Bromine/analysis , Bromine/blood , Optical Imaging , X-Ray Absorption Spectroscopy , Animals , Anthozoa , Cattle , Female , Humans , Mice , Optical Imaging/methods , Ovary/chemistry , Salmon , Sheep , Swine , Tandem Mass Spectrometry/methods , Trace Elements/analysis , Trace Elements/blood , X-Ray Absorption Spectroscopy/methods
4.
Food Chem ; 164: 50-4, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-24996304

ABSTRACT

Copper (Cu) is an essential element and the effects of diets deficient in it are well established. However, the effects of long-term high copper intake are less clear. The chemical form of copper from food sources and its resultant bioavailability is a potentially important factor in its biological activity. X-ray Absorption Near-Edge Structure (XANES) was used to determine the chemical forms of Cu in a range of foods that would make significant contributions to total copper absorption in a standard diet, as well as a chlorinated tap water sample. Analysis of the Cu K-edge XANES spectra suggested that Cu existed in both Cu(I) and Cu(II) forms, with the following five model compounds: Cu(I) acetate; Cu(II) acetate; Cu(I)-glutathione; Cu(I)-cysteine; and, Cu(II)-histidine being fitted to the sample spectra. This research suggested that the absorption of dietary copper could vary markedly dependent on the types of food consumed and the different bioavailability of the Cu species they contain.


Subject(s)
Copper/chemistry , Food Analysis , X-Ray Absorption Spectroscopy
SELECTION OF CITATIONS
SEARCH DETAIL
...