Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Life Sci Alliance ; 6(2)2023 02.
Article in English | MEDLINE | ID: mdl-36622345

ABSTRACT

Neutrophils are vital in defence against pathogens, but excessive neutrophil activity can lead to tissue damage and promote acute respiratory distress syndrome. COVID-19 is associated with systemic expansion of immature neutrophils, but the functional consequences of this shift to immaturity are not understood. We used flow cytometry to investigate activity and phenotypic diversity of circulating neutrophils in acute and convalescent COVID-19 patients. First, we demonstrate hyperactivation of immature CD10- subpopulations in severe disease, with elevated markers of secondary granule release. Partially activated immature neutrophils were detectable 12 wk post-hospitalisation, indicating long term myeloid dysregulation in convalescent COVID-19 patients. Second, we demonstrate that neutrophils from moderately ill patients down-regulate the chemokine receptor CXCR2, whereas neutrophils from severely ill individuals fail to do so, suggesting an altered ability for organ trafficking and a potential mechanism for induction of disease tolerance. CD10- and CXCR2hi neutrophil subpopulations were enriched in severe disease and may represent prognostic biomarkers for the identification of individuals at high risk of progressing to severe COVID-19.


Subject(s)
COVID-19 , Neutrophils , Receptors, Interleukin-8B , Humans , COVID-19/immunology , Flow Cytometry , Neutrophils/immunology , Receptors, Interleukin-8B/metabolism
2.
J Leukoc Biol ; 111(6): 1235-1242, 2022 06.
Article in English | MEDLINE | ID: mdl-34755385

ABSTRACT

Peptidylarginine deiminase 4 (PAD4) is a key regulator of inflammation but its function in infections remains incompletely understood. We investigate PAD4 in the context of malaria and demonstrate a role in regulation of immune cell trafficking and chemokine production. PAD4 regulates liver immunopathology by promoting neutrophil trafficking in a Plasmodium chabaudi mouse malaria model. In human macrophages, PAD4 regulates expression of CXCL chemokines in response to stimulation with TLR ligands and P. falciparum. Using patient samples, we show that CXCL1 may be a biomarker for severe malaria. PAD4 inhibition promotes disease tolerance and may represent a therapeutic avenue in malaria.


Subject(s)
Malaria , Neutrophils , Animals , Chemotactic Factors , Disease Models, Animal , Humans , Malaria/metabolism , Mice , Protein-Arginine Deiminase Type 4
3.
FEMS Microbiol Ecol ; 93(2)2017 02.
Article in English | MEDLINE | ID: mdl-27856622

ABSTRACT

Children with autism spectrum disorders (ASD) often suffer gastrointestinal problems consistent with imbalances in the gut microbial population. Treatment with antibiotics or pro/prebiotics has been postulated to regulate microbiota and improve gut symptoms, but there is a lack of evidence for such approaches, especially for prebiotics. This study assessed the influence of a prebiotic galactooligosaccharide (B-GOS) on gut microbial ecology and metabolic function using faecal samples from autistic and non-autistic children in an in vitro gut model system. Bacteriology was analysed using flow cytometry combined with fluorescence in situ hybridization and metabolic activity by HPLC and 1H-NMR. Consistent with previous studies, the microbiota of children with ASD contained a higher number of Clostridium spp. and a lower number of bifidobacteria compared with non-autistic children. B-GOS administration significantly increased bifidobacterial populations in each compartment of the models, both with autistic and non-autistic-derived samples, and lactobacilli in the final vessel of non-autistic models. In addition, changes in other bacterial population have been seen in particular for Clostridium, Rosburia, Bacteroides, Atopobium, Faecalibacterium prausnitzii, Sutterella spp. and Veillonellaceae. Furthermore, the addition of B-GOS to the models significantly altered short-chain fatty acid production in both groups, and increased ethanol and lactate in autistic children.


Subject(s)
Autistic Disorder/microbiology , Child , Feces/microbiology , Fermentation , Prebiotics , Anti-Bacterial Agents , Bacteroides/metabolism , Bifidobacterium/growth & development , Bifidobacterium/metabolism , Clostridium/metabolism , Fatty Acids, Volatile/metabolism , Humans , In Situ Hybridization, Fluorescence , Lactic Acid , Lactobacillus/metabolism , Microbiota , Oligosaccharides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...