Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Physiol ; 7: 378, 2016.
Article in English | MEDLINE | ID: mdl-27630576

ABSTRACT

MORN5 (MORN repeat containing 5) is encoded by a locus positioned on chromosome 17 in the chicken genome. The MORN motif is found in multiple copies in several proteins including junctophilins or phosphatidylinositol phosphate kinase family and the MORN proteins themselves are found across the animal and plant kingdoms. MORN5 protein has a characteristic punctate pattern in the cytoplasm in immunofluorescence imaging. Previously, MORN5 was found among differentially expressed genes in a microarray profiling experiment of the chicken embryo head. Here, we provided in situ hybridization to analyse, in detail, the MORN5 expression in chick craniofacial structures. The expression of MORN5 was first observed at stage HH17-18 (E2.5). MORN5 expression gradually appeared on either side of the primitive oral cavity, within the maxillary region. At stage HH20 (E3), prominent expression was localized in the mandibular prominences lateral to the midline. From stage HH20 up to HH29 (E6), there was strong expression in restricted regions of the maxillary and mandibular prominences. The frontonasal mass (in the midline of the face) expressed MORN5, starting at HH27 (E5). The expression was concentrated in the corners or globular processes, which will ultimately fuse with the cranial edges of the maxillary prominences. MORN5 expression was maintained in the fusion zone up to stage HH29. In sections MORN5 expression was localized preferentially in the mesenchyme. Previously, we examined signals that regulate MORN5 expression in the face based on a previous microarray study. Here, we validated the array results with in situ hybridization and QPCR. MORN5 was downregulated 24 h after Noggin and/or RA treatment. We also determined that BMP pathway genes are downstream of MORN5 following siRNA knockdown. Based on these results, we conclude that MORN5 is both regulated by and required for BMP signaling. The restricted expression of MORN5 in the lip fusion zone shown here supports the human genetic data in which MORN5 variants were associated with increased risk of non-syndromic cleft lip with or without cleft palate.

2.
Dev Dyn ; 245(9): 947-62, 2016 09.
Article in English | MEDLINE | ID: mdl-27264541

ABSTRACT

BACKGROUND: Lineage tracing has shown that most of the facial skeleton is derived from cranial neural crest cells. However, the local signals that influence postmigratory, neural crest-derived mesenchyme also play a major role in patterning the skeleton. Here, we study the role of BMP signaling in regulating the fate of chondro-osteoprogenitor cells in the face. RESULTS: A single Noggin-soaked bead inserted into stage 15 chicken embryos induced an ectopic cartilage resembling the interorbital septum within the palate and other midline structures. In contrast, the same treatment in stage 20 embryos caused a loss of bones. The molecular basis for the stage-specific response to Noggin lay in the simultaneous up-regulation of SOX9 and downregulation of RUNX2 in the maxillary mesenchyme, increased cell adhesiveness as shown by N-cadherin induction around the beads and increased RA pathway gene expression. None of these changes were observed in stage 20 embryos. CONCLUSIONS: These experiments demonstrate how slight changes in expression of growth factors such as BMPs could lead to gain or loss of cartilage in the upper jaw during vertebrate evolution. In addition, BMPs have at least two roles: one in patterning the skull and another in regulating the skeletogenic fates of neural crest-derived mesenchyme. Developmental Dynamics 245:947-962, 2016. © 2016 Wiley Periodicals, Inc.


Subject(s)
Bone Morphogenetic Proteins/metabolism , Embryo, Nonmammalian/cytology , Embryo, Nonmammalian/metabolism , Mesoderm/cytology , Mesoderm/physiology , Stem Cells/cytology , Stem Cells/physiology , Animals , Bone Morphogenetic Proteins/genetics , Carrier Proteins/pharmacology , Chick Embryo , Face/embryology , Gene Expression Regulation, Developmental/genetics , Gene Expression Regulation, Developmental/physiology , Mesoderm/metabolism , SOX9 Transcription Factor/genetics , SOX9 Transcription Factor/metabolism , Signal Transduction/drug effects , Stem Cells/metabolism
3.
Cell Mol Life Sci ; 72(12): 2445-59, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25854632

ABSTRACT

Fibroblast growth factors (FGFs) deliver extracellular signals that govern many developmental and regenerative processes, but the mechanisms regulating FGF signaling remain incompletely understood. Here, we explored the relationship between intrinsic stability of FGF proteins and their biological activity for all 18 members of the FGF family. We report that FGF1, FGF3, FGF4, FGF6, FGF8, FGF9, FGF10, FGF16, FGF17, FGF18, FGF20, and FGF22 exist as unstable proteins, which are rapidly degraded in cell cultivation media. Biological activity of FGF1, FGF3, FGF4, FGF6, FGF8, FGF10, FGF16, FGF17, and FGF20 is limited by their instability, manifesting as failure to activate FGF receptor signal transduction over long periods of time, and influence specific cell behavior in vitro and in vivo. Stabilization via exogenous heparin binding, introduction of stabilizing mutations or lowering the cell cultivation temperature rescues signaling of unstable FGFs. Thus, the intrinsic ligand instability is an important elementary level of regulation in the FGF signaling system.


Subject(s)
Bone Neoplasms/metabolism , Breast Neoplasms/metabolism , Cell Proliferation , Chondrosarcoma/metabolism , Fibroblast Growth Factors/chemistry , Fibroblast Growth Factors/metabolism , Signal Transduction , Animals , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Chondrosarcoma/genetics , Chondrosarcoma/pathology , Circular Dichroism , Female , Fibroblast Growth Factors/classification , Fibroblast Growth Factors/genetics , Humans , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Mutation/genetics , Protein Stability , Rats , Temperature , Tumor Cells, Cultured
4.
Dev Growth Differ ; 56(8): 555-72, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25280231

ABSTRACT

Fibroblast growth factor (FGF) signalling appears essential for the regulation of limb development, but a full complexity of this regulation remains unclear. Here, we addressed the effect of three different chemical inhibitors of FGF receptor tyrosine kinases (FGFR) on growth and patterning of the chicken wings. The inhibitor PD173074 caused shorter and thinner wing when using lower concentration. Microinjection of higher PD173074 concentrations (25 and 50 mmol/L) into the wing bud at stage 20 resulted in the development of small wing rudiment or the total absence of the wing. Skeletal analysis revealed the absence of the radius but not ulna, deformation of metacarpal bones and/or a reduction of digits. Treatment with PD161570 resembled the effects of PD173074. NF449 induced shortening and deformation of the developing wing with reduced autopodium. These malformed embryos mostly died at the stage HH25-29. PD173074 reduced chondrogenesis also in the limb micromass cultures together with early inhibition of cartilaginous nodule formation, evidenced by lack of sulphated proteoglycan and peanut agglutinin expression. The effect of FGFR inhibition on limb development observed here was unlikely mediated by excessive cell death as none of the inhibitors caused massive apoptosis at low concentrations. More probably, FGFR inhibition decreased both the proliferation and adhesion of mesenchymal chondroprogenitors. We conclude that FGFR signalling contributes to the regulation of the anterior-posterior patterning of zeugopod during chicken limb development.


Subject(s)
Benzenesulfonates/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Receptors, Fibroblast Growth Factor/antagonists & inhibitors , Wings, Animal/drug effects , Wings, Animal/embryology , Animals , Benzenesulfonates/administration & dosage , Chick Embryo , Protein Kinase Inhibitors/administration & dosage , Pyrimidines/administration & dosage , Receptors, Fibroblast Growth Factor/metabolism , Signal Transduction/drug effects
5.
Cells Tissues Organs ; 199(1): 1-23, 2014.
Article in English | MEDLINE | ID: mdl-24903755

ABSTRACT

Applications of nanoparticles (NP) in medicine, industry and other branches of human activities undoubtedly contribute to technology development and well-being. However, as NP are very small units in a wide range of materials, there is a lack of information related to possible side effects potentially affecting the health of organisms. There is increasing experimental interest in the determination of environmental effects on humans exposed to NP. Most such experimental studies focus on adult populations or adult experimental animals. However, embryos can be more sensitive to pollutants and environmental impacts in some species. Therefore, some investigations dealing particularly with the effects of NP on embryonic development have appeared recently and this issue is becoming of great concern. The aim of this review is to summarize the knowledge on the effects of various nanomaterials on embryonic development. A comprehensive collection of significant experimental nanotoxicity data is presented, which also indicate how the toxic effect of NP can be mediated and modulated with respect to possible effective protection strategies.


Subject(s)
Embryonic Development/drug effects , Nanoparticles/toxicity , Animals , Chickens , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...