Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Nat Prod ; 84(11): 2904-2913, 2021 11 26.
Article in English | MEDLINE | ID: mdl-34670365

ABSTRACT

A dereplication strategy using UPLC-QTOF/MSE, the HMAI method, and NMR spectroscopy led to the identification of five main steroidal saponins (1-5), including three previously unknown compounds named macroacanthosides A-C (3-5), in a bioactive fraction of Agave macroacantha. The major saponins were isolated, and some of them together with the saponin-rich fraction were then evaluated for phytotoxicity on a standard target species, Lactuca sativa. The inhibition values exhibited by the pure compounds were confirmed to be in agreement with the phytotoxicity of the saponin-rich fraction, which suggests that the saponin fraction could be applied successfully as an agrochemical without undergoing any further costly and/or time-consuming purification processes. The NMR data of the pure compounds as well as of those corresponding to the same compounds in the fraction were comparable, which indicated that the main saponins could be identified by means of this replication workflow and that no standards are required.


Subject(s)
Agave/chemistry , Saponins/isolation & purification , Lactuca/drug effects , Lactuca/growth & development , Magnetic Resonance Spectroscopy , Saponins/chemistry , Saponins/toxicity
2.
Molecules ; 26(16)2021 Aug 06.
Article in English | MEDLINE | ID: mdl-34443358

ABSTRACT

Plants are the everlasting source of a wide spectrum of specialized metabolites, characterized by wide variability in term of chemical structures and different biological properties such antiviral activity. In the search for novel antiviral agents against Human Immunodeficiency Virus type 1 (HIV-1) from plants, the phytochemical investigation of Scrophularia trifoliata L. led us to isolate and characterize four flavonols glycosides along with nine iridoid glycosides, two of them, 5 and 13, described for the first time. In the present study, we investigated, for the first time, the contents of a methanol extract of S. trifoliata leaves, in order to explore the potential antiviral activity against HIV-1. The antiviral activity was evaluated in biochemical assays for the inhibition of HIV-1Reverse Transcriptase (RT)-associated Ribonuclease H (RNase H) activity and HIV-1 Integrase (IN). Three isolated flavonoids, rutin, kaempferol-7-O-rhamnosyl-3-O-glucopyranoside, and kaempferol-3-O-glucopyranoside, 8-10, inhibited specifically the HIV-1 IN activity at submicromolar concentration, with the latter being the most potent, showing an IC50 value of 24 nM.


Subject(s)
Flavonols/chemistry , Flavonols/pharmacology , HIV-1/drug effects , Iridoids/chemistry , Iridoids/pharmacology , Scrophularia/chemistry , Anti-HIV Agents/chemistry , Anti-HIV Agents/pharmacology , Inhibitory Concentration 50 , Plant Leaves/chemistry
3.
J Pharm Biomed Anal ; 165: 119-128, 2019 Feb 20.
Article in English | MEDLINE | ID: mdl-30529825

ABSTRACT

In this study, ethyl acetate, acetone, ethanol and water extracts from flowers, stems and roots of Cistanche phelypaea (L.) Cout were appraised for radical scavenging activity (RSA) towards 1,1-diphenyl-2-picrylhydrazyl,2,2-azino-bis(3-ethylbenzo-thiazoline-6-sulfonic acid) and superoxide free radicals, and for metal chelating activities on iron and copper ions. The water extracts had the highest antioxidant activity, especially those from roots and flowers, and were further appraised for in vitro inhibition of enzymes implicated on the onset of human ailments, namely acetyl- (AChE) and butyrylcholinesterase (BuChE) for Alzheimer's disease, α-glucosidase and α-amylase for diabetes, and tyrosinase for skin hyperpigmentation disorders. The extracts had a higher activity towards BuChE, and the roots extract had the highest capacity to inhibit tyrosinase. Samples showed a low capacity to inhibit carbohydrate hydrolysing enzymes, except for the root extract with a good inhibition on glucosidase. Samples were then characterized by NMR (1D and 2D): the main metabolites identified in the flowers extract were iridoid glycosides, in particular gluroside and bartsioside. In stems, phenylehanoid glycosides (PhGs) and iridoids were detected, especially acteoside. In roots were detected essentially PhGs, mainly echinacoside and tubuloside A. Docking studies were performed on the identified compounds. A favorable binding energy of tubuloside A to tyrosinase was calculated, and indicated this compound as a possible competitive inhibitor of α-glucosidase and tyrosinase. Our results suggest that C. phelypeae is a promising source of biologically-active compounds with health promoting properties for pharmaceutical and biomedical applications.


Subject(s)
Antioxidants/pharmacology , Cistanche/chemistry , Enzyme Inhibitors/pharmacology , Plant Extracts/pharmacology , Antioxidants/isolation & purification , Enzyme Inhibitors/isolation & purification , Flowers , Free Radical Scavengers/isolation & purification , Free Radical Scavengers/pharmacology , Magnetic Resonance Spectroscopy , Metabolomics , Molecular Docking Simulation , Plant Extracts/chemistry , Plant Roots , Plant Stems , Salt-Tolerant Plants/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...