Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 62(24): 9369-9378, 2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37265456

ABSTRACT

The understanding of structure and bonding in intermetallic phases still lags behind that of molecular compounds. For that reason, exploring intermetallic phases and identifying structural patterns and relationships are particularly important for closing this knowledge gap. In particular, here we report on the addition of increasing amounts of platinum to ∼2:1 mixtures of tin and neodymium, which yields eight ternary Pt/Sn/Nd compounds, four of which have not been reported before. Interestingly, except for PtSnNd (1), all observed ternary phases of the system can be derived from the binary compounds Sn2Nd and Sn5Nd2 by adding Pt to the composition(s), as they lie on or close to two lines: Sn2Nd-Pt (Pt0.21(1)Sn2Nd (2), PtSn2Nd (3), Pt1.33Sn2Nd (4), Pt2-xSn2+xNd (x = 0.27(3), 5), and Pt3Sn2Nd (6)) or Sn5Nd2-Pt (Pt1.5Sn5-xNd2 (x = 0.16(2), 7) and Pt3Sn5Nd2-x (x = 0.161(8), 8)). While the introduction of increasing amounts of Pt to the binaries Sn2Nd and Sn5Nd2 leads to stepwise changes in the coordination environment of Nd, Pt preserves its coordination over the entire system in the form of interpenetrating bipyramidal {PtSn5Nd5} clusters.

2.
Inorg Chem ; 59(10): 7352-7359, 2020 May 18.
Article in English | MEDLINE | ID: mdl-32378883

ABSTRACT

Starting generally with a 4:6:3 molar ratio of Pt, Sn, and R (where R = La-Sm), with or without the application of a NaCl flux, seven ternary compounds were obtained as single crystals. The platinides Pt4Sn6R3 (R = La-Nd) crystallize with the Pt4Ge6Pr3 type of structure (oP52, Pnma, a = 27.6-27.8 Å, b = 4.59-4.64 Å, c = 9.33-9.40 Å). With R = Pr, Pt4Sn6Pr3-x (oP52, Pnma, a = 7.2863(3) Å, b = 4.4909(2) Å, c = 35.114(1) Å) is also obtained, which might be considered a high-temperature polymorph with disorder on the Sn- and Pr-sites. For R = Nd and Sm, a structurally related isostructural series with a slightly different composition Pt3Sn5R2-x (oP52, Cmc21, a = 4.50-4.51 Å, b = 26.14-26.30 Å, c ≈ 7.29 Å) has been observed, together with Pt7Sn9Sm5 (oS42, Amm2, a = 4.3289(5) Å, b = 28.798(4) Å, c = 7.2534(9) Å) under the same conditions. The latter exhibits the rare Zr5Pd9P7-type structure, linking polar intermetallics to metal phosphides, in accord with P7Pd9Zr5≡Pt7Sn9Sm5. All structures may be described in terms of either negative Pt/Sn networks encapsulating positive R atoms, or {PtSnx} clusters (x = 5, 6, or rarely 7) sharing vertices and edges with R in the second coordination sphere and with considerable heterometallic Pt-R bonding contributions.

3.
Acta Crystallogr C Struct Chem ; 74(Pt 9): 991-996, 2018 Sep 01.
Article in English | MEDLINE | ID: mdl-30191890

ABSTRACT

The three binary Tb/Er-rich transition metal compounds Tb3Pd2 (triterbium dipalladium), Er3Pd2 (trierbium dipalladium) and Er6Co5-x (hexaerbium pentacobalt) crystallize in the space groups Pbam (Pearson symbol oP20), P4/mbm (tP10) and P63/m (hP22), respectively. Single crystals of Tb3Pd2 and Er6Co5-x suitable for X-ray structure analysis were obtained using rare-earth halides as a flux. Tb3Pd2 adopts its own structure type, which can be described as a superstructural derivative of the U3Si2 type, which is the type adopted by Er3Pd2. Compound Er6Co5-x belongs to the Ce6Co2-xSi3 family. All three compounds feature fused tricapped {TR6} (R = rare-earth metal and T = transition metal) trigonal prismatic heterometallic clusters. R3Pd2 is reported to crystallize in the U3Si2 type; however, our more detailed structure analysis reveals that deviations occur with heavier R elements. Similarly, Er6Co5-x was assumed to be stoichiometric Er4Co3 = Er6Co4.5. Our studies reveal that it has a single defective transition-metal site leading to the composition Er6Co4.72(2). LMTO (linear muffin-tin orbital)-based electronic structure calculations suggest the strong domination of heteroatomic bonding in all three structures.

4.
Acta Crystallogr C Struct Chem ; 73(Pt 9): 692-696, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28872066

ABSTRACT

Y3Au4 (triyttrium tetragold) and Y14Au51 (tetradecayttrium henpentacontagold), two binary representatives of Au-rich rare earth (R) systems crystallize with the space groups R-3 and P6/m, adopting the Pu3Pd4 and Gd14Ag51 structure types, respectively (Pearson symbols hR42 and hP65). A variety of binary R-Au compounds have been reported, although only a few have been investigated thoroughly. Many reports lack information or misinterpret known compounds reported elsewhere. The Pu3Pd4 type is fairly common for group 10 elements Ni, Pd, and Pt, while Au representatives are restricted to just five examples, i.e. Ca3Au4, Pr3Au4, Nd3Au4, Gd3Au4, and Th3Au4. Sm6Au7 is suspected to be Sm3Au4 due to identical symmetry and close unit-cell parameters. The Pu3Pd4 structure type allows for full substitution of the position of the rare earth atom by more electronegative and smaller elements, i.e. Ti and Zr. The Gd14Ag51 type instead is more common for the group 11 metals, while rare representatives of group 12 are known. Y3Au4 can be represented as a tunnel structure with encapsulated cations and anionic chains. Though tunnels are present in Y14Au51, this structure is more complex and is best described in terms of polyhedral `pinwheels' around the tunnel forming polyhedra along the c axis.

5.
Inorg Chem ; 56(12): 7247-7256, 2017 Jun 19.
Article in English | MEDLINE | ID: mdl-28581719

ABSTRACT

A new series of intermetallic compounds R3Au9Pn (R = Y, Gd-Tm; Pn = Sb, Bi) has been discovered during the explorations of the Au-rich parts of rare-earth-containing ternary systems with p-block elements. The existence of the series is strongly restricted by both geometric and electronic factors. R3Au9Pn compounds crystallize in the hexagonal crystal system with space group P63/m (a = 8.08-8.24 Å, c = 8.98-9.08 Å). All compounds feature Au-Pn, formally anionic, networks built up by layers of alternating edge-sharing Au@Au6 and Sb@Au6 trigonal antiprisms of overall composition Au6/2Pn connected through additional Au atoms and separated by a triangular cationic substructure formed by R atoms. From a first look, the series appears to be isostructural with recently reported R3Au7Sn3 (a ternary ordered derivative of the Cu10Sn3-structure type), but no example of R3Au9M is known when M is a triel or tetrel element. R3Au9Pn also contains Au@Au6Au2R3 fully capped trigonal prisms, which are found to be isostructural with those found in the well-researched R14Au51 series. This structural motif, not present in R3Au7Sn3, represents a previously unrecognized link between Cu10Sn3 and Gd14Ag51 parent structure types. Magnetic property measurements carried out for Ho3Au9Sb reveal a complex magnetic structure characterized by antiferromagnetic interactions at low temperature (TN = 10 K). Two metamagnetic transitions occur at high field with a change from antiferromagnetic toward ferromagnetic ordering. Density functional theory based computations were performed to understand the materials' properties and to shed some light on the stability ranges. This allowed a better understanding of the bonding pattern, especially of the Au-containing substructure, and elucidation of the role of the third element in the stability of the structure type.

SELECTION OF CITATIONS
SEARCH DETAIL
...