Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(6)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38544099

ABSTRACT

A comparison of low-cost radon monitors was conducted at the Laboratory of Natural Radiation (LNR). The monitors we evaluated were EcoQube, RadonEye, RadonEye Plus2, Spirit, ViewPlus, ViewRadon and WavePlus. An AlphaGUARD monitor calibrated at the Laboratory of Environmental Radioactivity of the University of Cantabria (LaRUC), accredited for testing and calibration according to ISO/IEC 17025, provided the reference value of radon concentration. The temporal stability of the monitors was studied, obtaining a percentage of missing records ranged from 1% to 19% of the data. The main technical characteristics studied were temporal stability, measurement ranges, accuracy, correlation and response time. The main results show that the measurement ranges align with those specified by their manufacturers, with percentage differences with respect to the reference monitor of between 5% and 16%. The diversity found for response time is remarkable, with values ranging from 1 to 15 h, with Pearson correlation factors between 0.63 and 0.90.

2.
Article in English | MEDLINE | ID: mdl-35409895

ABSTRACT

Interlaboratory exercises are a good tool to compare the response of different systems to the same quantity and to identify possible inconsistencies between them. One of the main goals of the EMPIR 19ENV01 traceRadon project is to harmonize radon flux measurements based on different systems and methodologies. In the framework of the traceRadon Project, two radon flux intercomparison campaigns were carried out in October 2021 at high and at low radon source areas. Four institutions participated in the field intercomparison exercises with their own systems. Every system was based on a specific radon monitor (diffusion or pump mode) and an accumulation chamber (with manual or automatic opening). Radon fluxes were calculated by each participant using both exponential and linear fittings of the radon activity concentration measured over time within the accumulation chambers. The results of this study show mainly: (i) the exponential approach is not advisable due to the variability of the radon flux and the leakage of the systems during long-time measurements; (ii) the linear approach should be applied to minimize the measurement period in agreement with the time response and sensitivity of the monitors; (iii) radon flux measured at high radon source areas (radium content of about 800 Bq kg-1) risks being underestimated because of the influence of advective effects; (iv) radon flux measured at low radon source areas (radium content of about 30 Bq kg-1) may present large uncertainties if sensitive radon monitors with pump mode are not used.


Subject(s)
Air Pollutants, Radioactive , Radiation Monitoring , Radium , Radon , Air Pollutants, Radioactive/analysis , Exercise , Humans , Radiation Monitoring/methods , Radium/analysis , Radon/analysis
3.
Article in English | MEDLINE | ID: mdl-35329349

ABSTRACT

A study is presented on rapid episodes of air exchange in the Polychrome Room of the Altamira Cave (Cantabria, Spain) using continuous monitoring of radon and CO2 tracer gases, as well as environmental parameters such as internal and external air temperature. For this, criteria have been developed to carry out an inventory of these types of events during the 2015-2020 period. Most of the degassing-recharging events occur over several hours or days, especially during spring and autumn. This means that the room can be significantly ventilated during these short periods of time, posing an exchange of energy and matter with potential impact in the preservation of the rock art present inside. In addition, the hypothesis that temperature gradients between the internal and external atmosphere is one of the main factors that induces degassing has been tested. To this end, correlation analysis has been carried out between the different magnitudes involved in this study, such as radon and CO2 concentrations, and air temperature gradients. A total of 37 degassing-recharging events have been analyzed for the 5 year studied period. The distribution of the duration of the events have been described, as well as that of the correlations between the degassing and recharge stages of each event, showing significant values of r coefficients for the correlation with temperature gradients between the internal and external atmosphere.


Subject(s)
Air Pollutants, Radioactive , Radiation Monitoring , Radon , Air Pollutants, Radioactive/analysis , Carbon Dioxide/analysis , Caves , Radon/analysis , Ventilation
4.
Article in English | MEDLINE | ID: mdl-33540910

ABSTRACT

One of the requirements of EU-BSS (European Basic Safety Standards) is the design and implementation of a National Radon Action Plan in the member states. This should define, as accurately as possible, areas of risk for the presence of radon gas (222Rn) in homes and workplaces. The concept used by the Spanish Nuclear Safety Council (CSN), the body responsible for nuclear safety and radiation protection in Spain, to identify "radon priority areas" is that of radon potential. This paper establishes a different methodology from that used by the CSN, using the same study variables (indoor radon measurements, gamma radiation exposure data, and geological information) to prepare a radon potential map that improves the definition of the areas potentially exposed to radon in Spain. The main advantage of this methodology is that by using simple data processing the definition of these areas is improved. In addition, the application of this methodology can improve the delimitation of radon priority areas and can be applied within the cartographic system used by the European Commission-Joint Research Center (EC-JRC) in the representation of different environmental parameters.


Subject(s)
Air Pollutants, Radioactive , Air Pollution, Indoor , Radiation Monitoring , Radiation Protection , Radon , Air Pollutants, Radioactive/analysis , Air Pollution, Indoor/analysis , Radon/analysis , Spain
5.
Article in English | MEDLINE | ID: mdl-32182944

ABSTRACT

Interlaboratory comparisons are a basic part of the regular quality controls of laboratories to warranty the adequate performance of test and measurements. The exercise presented in this article is the comparison of indoor radon gas measurements under field conditions performed with passive detectors and active monitors carried out in the Laboratory of Natural Radiation (LNR). The aim is to provide a direct comparison between different methodologies and to identify physical reasons for possible inconsistencies, particularly related to sampling and measurement techniques. The variation of radon concentration during the comparison showed a big range of values, with levels from approximately 0.5 to 30 kBq/m3. The reference values for the two exposure periods have been derived from a weighted average of participants' results applying an iterative algorithm. The indexes used to analyze the participants' results were the relative percentage difference D(%), the Zeta score ( ζ ), and the z-score ( z ). Over 80% of the results for radon in air exposure are within the interval defined by the reference value and 20% and 10% for the first and the second exposure, respectively. Most deviations were detected with the overestimating of the exposure using passive detectors due to the related degassing time of detector holder materials.


Subject(s)
Air Pollutants, Radioactive , Air Pollution, Indoor , Radiation Monitoring , Radon , Background Radiation , Laboratories
6.
J Radiol Prot ; 40(2): 367-380, 2020 06.
Article in English | MEDLINE | ID: mdl-31978929

ABSTRACT

The atmosphere of caves is a special environment where it is necessary to take into account some particular characteristics when assessing the radon dose. The equilibrium factor (F) between radon and its progeny, and especially its unattached fraction (f p), is a key parameter in radon dose evaluation. In order to consider the specific features of the atmosphere in the Altamira Cave, the radon and particle concentrations have been measured. The mean annual radon concentration inside the cave over the period 2013-2019 is around 3500 Bq m-3 with a standard deviation of 1833 Bq m-3 and this exhibits seasonal variations. This value surpasses all international (WHO, IAEA, ICRP) upper action and reference levels (occupational and non-occupational). Dose rate levels expressed in µSv h-1 were estimated for four different equilibrium scenarios between radon and its progeny 218Po, 214Pb, 214Bi and 214Po. The most recent dose conversion factors have been used and the contribution made to the dose by the unattached fraction of radon progeny f p has been also assessed from the particle concentration. The results suggest that the mean annual dose levels show variations of up to 500% due to the range of F and the f p considered in this study. Given the high radon concentrations usually found in show caves, the best way to reduce this variability and its associated uncertainty in dose assessment is to conduct specific studies aimed at determining both F and f p.


Subject(s)
Air Pollutants, Radioactive/analysis , Caves , Radiation Monitoring/methods , Radon/analysis , Humans , Radiation Dosage , Radon Daughters/analysis , Spain
7.
Sci Total Environ ; 624: 416-423, 2018 May 15.
Article in English | MEDLINE | ID: mdl-29268214

ABSTRACT

The use of radon as an atmospheric tracer in the Altamira Cave over the past 30years has provided relevant information about gaseous exchanges between the Polychromes Room, the adjoining Chambers inside the cave, and the outside atmosphere. The relatively simple physico-chemical behaviour of radon gas provides a marked advantage over other tracer gases that are usually present in high concentrations in hypogeous environments, such as CO2. Two types of continuous radon measurement were undertaken. The first involves active detectors located in the Hall and Polychromes Room, which provide radon concentration values at 1-hour intervals. In addition, nuclear solid track etched detectors (CR-39) are used in every chamber of the cave over 14-day exposure periods, providing average radon concentrations. In this paper we show some of the specific degassing and recharge events identified by anomalous variations in the concentration of radon gas in the Polychromes Room. In addition, we update knowledge regarding the degree of connection between chambers inside the cave and with the outside atmosphere. We verify that the connection between the Polychromes Room and the rest of the cave has been drastically reduced by the installation of the second closure in 2008. Except for point exchanges with the Crossing zone generated by a negative temperature gradient in that direction, the atmosphere of the Polychromes Room remains stable, or else it exchanges matter with the outside atmosphere through the karst interface. The role of radon as a tracer is demonstrated to be valid both to reflect seasonal cycles of degassing and recharge, and to analyse shorter (daily) period fluctuations.

8.
Sci Total Environ ; 543(Pt A): 460-466, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26599146

ABSTRACT

Radon ((222)Rn) levels in air and water have been analyzed continuously for almost a year in Las Caldas de Besaya thermal spa, north Spain. Radon is a naturally occurring noble gas from the decay of radium ((226)Ra) both constituents of radioactive uranium 238 series. It has been recognized as a lung carcinogen by the World Health Organization (WHO) and International Agency for Research on Cancer (IARC). Furthermore the Royal Decree R.D 1439/2010 of November, 2010 establishes the obligation to study occupational activities where workers and, where appropriate, members of the public are exposed to inhalation of radon in workplaces such as spas. Together with radon measures several physico-chemical parameters were obtained such as pH, redox potential, electrical conductivity and air and water temperature. The devices used for the study of the temporal evolution of radon concentration have been the RTM 2100, the Radon Scout and gamma spectrometry was complementarily used to determine the transfer factor of the silicone tubes in the experimental device. Radon concentrations obtained in water and air of the spa are high, with an average of 660 Bq/l and 2900 Bq/m(3) respectively, where water is the main source of radon in the air. Radiation dose for workers and public was estimated from these levels of radon. The data showed that the thermal processes can control the behavior of radon which can be also influenced by various physical and chemical parameters such as pH and redox potential.


Subject(s)
Air Pollutants, Radioactive/analysis , Hot Springs , Radiation Monitoring , Radon/analysis , Water Pollutants, Radioactive/analysis , Groundwater , Humans , Radium/analysis , Spain
SELECTION OF CITATIONS
SEARCH DETAIL
...