Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biochem Mol Toxicol ; 38(1): e23536, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37942797

ABSTRACT

This study aimed to present new data on the side effects of favipiravir on healthy lung tissue and the respiratory system. In the study, two different durations (5 and 10 days) were preferred to determine the effect of favipiravir treatment due to clinical improvement rates of approximately 5 and 10 days during the use of favipiravir in COVID-19 patients. In addition, after 10 days of favipiravir treatment, animals were kept for 5 days without any treatment to determine the regeneration of lung tissues. Favipiravir was administered to rats by oral gavage at a daily dose of 200 mg/kg for 5 and 10 days, as in previous studies. At the end of the experiment, the histopathological and biochemical effects of favipiravir in the lung tissue were investigated. The data obtained from the study showed that favipiravir increased oxidative stress parameters, expression of apoptotic markers, and pro-inflammatory markers in lung tissue. Since malondialdehydes is an oxidant parameter, it increased in favipiravir-administered groups; It was determined that the antioxidant parameters glutathione, superoxide dismutase, glutathione peroxidase, and catalase decreased. Other markers used in the analysis are Bcl-2, Bax, NF-κB, interleukin (IL)-6, Muc1, iNOS, P2X7R, IL-6 and caspase-3. The levels of Bax, caspase-3, NF-κB, IL-6, Muc1, and P2X7R were increased in the Fav-treated groups compared with the control. However, the levels of Bcl-2 decreased in the Fav-treated groups. The present study proves that favipiravir, widely used today, causes side effects in lung tissue.


Subject(s)
Amides , Interleukin-6 , NF-kappa B , Pyrazines , Humans , Rats , Animals , Caspase 3/metabolism , NF-kappa B/metabolism , bcl-2-Associated X Protein/metabolism , Interleukin-6/metabolism , Antioxidants/pharmacology , Oxidative Stress , Lung/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Apoptosis
2.
Vet Res Forum ; 14(5): 249-257, 2023.
Article in English | MEDLINE | ID: mdl-37342290

ABSTRACT

This study was aimed at determining the effects of dietary supplementation with thyme essential oil (TEO) and rosemary essential oil (REO) on blood parameters, the anti-oxidant metabolism in the liver, breast and drumstick muscle tissues, the morphology of the small intestine, and the myofibril structure of the superficial pectoral and biceps femoris muscles. For this purpose, 400 three-day-old male Ross 308 chicks were used. Five groups, each comprising 80 broilers, were established. The control group was fed on a basal diet alone and groups thyme-1, thyme-2, rosemary-1 and rosemary-2 received basal diets supplemented with 0.15 g kg-1 of TEO, 0.30 g kg-1 of TEO, 0.10 g kg-1 of REO and 0.20 g kg-1 of REO, respectively. The serum total cholesterol and low-density lipoprotein levels were decreased significantly in group thyme-1. Dietary TEO and REO significantly increased glutathione levels in all tissues. Drumstick catalase activity was significantly increased in groups thyme-1, thyme-2 and rosemary-2. Superoxide dismutase activity was significantly increased in the breast muscle of all groups that received dietary TEO and REO. Histomorphometrical analyses demonstrated that dietary supplementation with TEO and REO increased both crypt depth and villus height in the small intestine. In result, the tested doses of dietary TEO and REO were ascertained to improve the intestinal morphology and to increase the anti-oxidant metabolism mainly in the breast muscle, the drumstick muscle and liver.

SELECTION OF CITATIONS
SEARCH DETAIL
...