Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
ACS Omega ; 9(25): 27085-27092, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38947806

ABSTRACT

Despite a variety of glucose sensors being available today, the development of nonenzymatic devices for the determination of this biologically relevant analyte is still of particular interest in several applicative sectors. Here, we report the development of an impedimetric, enzyme-free electrochemical glucose sensor based on carbon nanofibers (CNFs) functionalized with an aromatic diamine via a simple wet chemistry functionalization. The electrochemical performance of the chemically modified carbon-based screen-printed electrodes (SPCEs) was evaluated by electrical impedance spectroscopy (EIS), demonstrating a high selectivity of the sensor for glucose with respect to other sugars, such as fructose and sucrose. The sensing parameters to obtain a reliable calibration curve and the selective glucose sensing mechanism are discussed here, highlighting the performance of this novel electrochemical sensor for the selective sensing of this important analyte. Two linear trends were noted, one at low concentrations (0-1200 µM) and the other from 1200 to 5000 µM. The limit of detection (LOD), calculated as the (standard error/slope)*3.3, was 18.64 µM. The results of this study highlight the performance of the developed novel electrochemical sensor for the selective sensing of glucose.

2.
Expert Opin Drug Deliv ; 21(5): 751-766, 2024 May.
Article in English | MEDLINE | ID: mdl-38841752

ABSTRACT

INTRODUCTION: The dramatic effects caused by viral diseases have prompted the search for effective therapeutic and preventive agents. In this context, 2D graphene-based nanomaterials (GBNs) have shown great potential for antiviral therapy, enabling the functionalization and/or decoration with biomolecules, metals and polymers, able to improve their interaction with viral nanoparticles. AREAS COVERED: This review summarizes the most recent advances of the antiviral research related to 2D GBNs, based on their antiviral mechanism of action. Their ability to inactivate viruses by inhibiting the entry inside cells, or through drug/gene delivery, or by stimulating the host immune response are here discussed. As reported, biological studies performed in vitro and/or in vivo allowed to demonstrate the antiviral activity of the developed GBNs, at different stages of the virus life cycle and the evaluation of their long-term toxicity. Other mechanisms closely related to the physicochemical properties of GBNs are also reported, demonstrating the potential of these materials for antiviral prophylaxis. EXPERT OPINION: GBNs represent valuable tools to fight emerging or reemerging viral infections. However, their translation into the clinic requires standardized scale-up procedures leading to the reliable and reproducible synthesis of these nanomaterials with suitable physicochemical properties, as well as more in-depth pharmacological and toxicological investigations. We believe that multidisciplinary approaches will give valuable solutions to overcome the encountered limitations in the application of GBNs in biomedical and clinical field.


Subject(s)
Antiviral Agents , Drug Delivery Systems , Graphite , Nanostructures , Virus Diseases , Graphite/chemistry , Antiviral Agents/administration & dosage , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , Humans , Nanostructures/chemistry , Animals , Virus Diseases/prevention & control , Virus Diseases/drug therapy , Viruses/drug effects , Gene Transfer Techniques
3.
J Funct Biomater ; 14(8)2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37623672

ABSTRACT

New technologies and materials could help in this fight against healthcare-associated infections. As the majority of these infections are caused by antibiotic-resistant bacteria, the development of materials with intrinsic antibacterial properties is a promising field of research. We combined chitosan (CS), with antibacterial properties, with polyhedral oligomeric silsesquioxanes (POSS), a biocompatible polymer with physico-chemical, mechanical, and rheological properties, creating a hydrogel using cross-linking agent genipin. The antibacterial properties of CS and CS-POSS hydrogels were investigated against nosocomial Gram-positive and Gram-negative bacteria both in terms of membrane damage and surface charge variations, and finally, the anti-biofilm property was studied through confocal microscopy. Both materials showed a good antibacterial capacity against all analyzed strains, both in suspension, with % decreases between 36.36 and 73.58 for CS and 29.86 and 66.04 for CS-POSS, and in plates with % decreases between 55.29 and 78.32 and 17.00 and 53.99 for CS and CS-POSS, respectively. The treated strains compared to the baseline condition showed an important membrane damage, which also determined a variation of surface charges, and finally, for both hydrogels, a remarkable anti-biofilm property was highlighted. Our findings showed a possible future use of these biocompatible materials in the manufacture of medical and surgical devices with intrinsic antibacterial and anti-biofilm properties.

4.
Nanomaterials (Basel) ; 13(16)2023 Aug 20.
Article in English | MEDLINE | ID: mdl-37630966

ABSTRACT

Solid tumors are a leading cause of cancer-related deaths globally, being characterized by rapid tumor growth and local and distant metastases. The failures encountered in cancer treatment are mainly related to the complicated biology of the tumor microenvironment. Nanoparticles-based (NPs) approaches have shown the potential to overcome the limitations caused by the pathophysiological features of solid cancers, enabling the development of multifunctional systems for cancer diagnosis and therapy and allowing effective inhibition of tumor growth. Among the different classes of NPs, 2D graphene-based nanomaterials (GBNs), due to their outstanding chemical and physical properties, easy surface multi-functionalization, near-infrared (NIR) light absorption and tunable biocompatibility, represent ideal nanoplatforms for the development of theranostic tools for the treatment of solid tumors. Here, we reviewed the most recent advances related to the synthesis of nano-systems based on graphene, graphene oxide (GO), reduced graphene oxide (rGO), and graphene quantum dots (GQDs), for the development of theranostic NPs to be used for photoacoustic imaging-guided photothermal-chemotherapy, photothermal (PTT) and photodynamic therapy (PDT), applied to solid tumors destruction. The advantages in using these nano-systems are here discussed for each class of GBNs, taking into consideration the different chemical properties and possibility of multi-functionalization, as well as biodistribution and toxicity aspects that represent a key challenge for their translation into clinical use.

5.
Toxics ; 11(8)2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37624191

ABSTRACT

Airborne micro- and nanoplastics are widely spread and pose a risk to human health. The third polymer plastic most commonly produced and present in atmospheric fallout is polystyrene (PS). For these reasons and for a more realistic assessment of biological effects, we examined in-home oxidised (ox-, simulating photoaging) nPS/mPS (0.1 and 1 µm), comparing the effects with virgin ones (v-). On human alveolar cells (A549), we quantified the cellular uptake, using FITC-functionalised nPS/mPS, while cytotoxicity, changes in the acidic compartment, ROS production, mitochondrial function, and DNA damage were assessed to study the effects of internalised v- and ox-nPS/mPS. The results showed that the uptake was dose-dependent and very fast (1 h), since, at the lowest dose (1.25 µg/well), it was 20.8% and 21.8% of nPS and mPS, respectively. Compared to v-, significant ROS increases, DNA damage, and mitochondrial impairment were observed after exposure to ox-nPS/mPS. The enhancement of effects due to environmental aging processes highlighted the true potential impact on human health of these airborne pollutants.

6.
Pharmaceutics ; 15(6)2023 May 28.
Article in English | MEDLINE | ID: mdl-37376054

ABSTRACT

In recent years, bioactive compounds have been the focus of much interest in scientific research, due to their low toxicity and extraordinary properties. However, they possess poor solubility, low chemical stability, and unsustainable bioavailability. New drug delivery systems, and among them solid lipid nanoparticles (SLNs), could minimize these drawbacks. In this work, morin (MRN)-loaded SLNs (MRN-SLNs) were prepared using a solvent emulsification/diffusion method, using two different lipids, Compritol® 888 ATO (COM) or Phospholipon® 80H (PHO). SLNs were investigated for their physical-chemical, morphological, and technological (encapsulation parameters and in vitro release) properties. We obtained spherical and non-aggregated nanoparticles with hydrodynamic radii ranging from 60 to 70 nm and negative zeta potentials (about -30 mV and -22 mV for MRN-SLNs-COM and MRN-SLNs-PHO, respectively). The interaction of MRN with the lipids was demonstrated via µ-Raman spectroscopy, X-ray diffraction, and DSC analysis. High encapsulation efficiency was obtained for all formulations (about 99%, w/w), particularly for the SLNs prepared starting from a 10% (w/w) theoretical MRN amount. In vitro release studies showed that about 60% of MRN was released within 24 h and there was a subsequent sustained release within 10 days. Finally, ex vivo permeation studies with excised bovine nasal mucosa demonstrated the ability of SLNs to act as a penetration enhancer for MRN due to the intimate contact and interaction of the carrier with the mucosa.

7.
Molecules ; 28(7)2023 Mar 28.
Article in English | MEDLINE | ID: mdl-37049785

ABSTRACT

Idebenone (IDE), a synthetic short-chain analogue of coenzyme Q10, is a potent antioxidant able to prevent lipid peroxidation and stimulate nerve growth factor. Due to these properties, IDE could potentially be active towards cerebral disorders, but its poor water solubility limits its clinical application. Octanoyl-ß-cyclodextrin is an amphiphilic cyclodextrin (ACyD8) bearing, on average, ten octanoyl substituents able to self-assemble in aqueous solutions, forming various typologies of supramolecular nanoassemblies. Here, we developed nanoparticles based on ACyD8 (ACyD8-NPs) for the potential intranasal administration of IDE to treat neurological disorders, such as Alzheimer's Disease. Nanoparticles were prepared using the nanoprecipitation method and were characterized for their size, zeta potential and morphology. STEM images showed spherical particles, with smooth surfaces and sizes of about 100 nm, suitable for the proposed therapeutical aim. The ACyD8-NPs effectively loaded IDE, showing a high encapsulation efficiency and drug loading percentage. To evaluate the host/guest interaction, UV-vis titration, mono- and two-dimensional NMR analyses, and molecular modeling studies were performed. IDE showed a high affinity for the ACyD8 cavity, forming a 1:1 inclusion complex with a high association constant. A biphasic and sustained release of IDE was observed from the ACyD8-NPs, and, after a burst effect of about 40%, the release was prolonged over 10 days. In vitro studies confirmed the lack of toxicity of the IDE/ACyD8-NPs on neuronal SH-SY5Y cells, and they demonstrated their antioxidant effect upon H2O2 exposure, as a general source of ROS.


Subject(s)
Cyclodextrins , Nanoparticles , Neuroblastoma , Humans , Cyclodextrins/pharmacology , Hydrogen Peroxide , Antioxidants/pharmacology , Drug Carriers , Particle Size
8.
Environ Toxicol Pharmacol ; 99: 104086, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36842547

ABSTRACT

Micro and nanoplastics are ubiquitous pollutants that can cause adverse health effects even in humans. Effects of virgin and oxidised (simulating the aging processes) polystyrene nano (nPS) and micro particles (mPS) with diameters of 0.1 and 1 µm were studied on human professional phagocytes (i.e., monocyte cells THP-1 and macrophage-like mTHP-1 cells). After characterization by ATR-FTIR, UV-Vis spectroscopy, SEM and dynamic light-scattering analyses, the particles were FITC functionalised to quantify cellular uptake. Changes in the cell compartments were studied by acrydine orange and the pro-oxidant, cytotoxic and genotoxic effects were assessed. Phagocytosis was dose- and time- dependent and at 24 h 52% of nPS and 58% of mPS were engulfed. Despite the high homeostasis of professional phagocytes, significant ROS increases and DNA damage were observed after exposure to oxidised particles. The results highlight that the environmental aging processes enhances the adverse health effects of micro and nanoplastics.


Subject(s)
Microplastics , Water Pollutants, Chemical , Humans , Microplastics/toxicity , Plastics , Polystyrenes/toxicity , Reactive Oxygen Species , Phagocytes/chemistry , Water Pollutants, Chemical/toxicity
9.
Materials (Basel) ; 15(22)2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36431692

ABSTRACT

Hybrid hydrogels composed of chitosan (CS) have shown great potential in bone tissue engineering and regeneration. The introduction of polyhedral oligomeric silsesquioxanes (POSS) in the biopolymeric matrix has been demonstrated to improve the rheological and biological properties of the hybrid composites. In this work, we have integrated the favourable features of chitosan (CS) and POSS nanoparticles to design new nanocomposites for bone tissue regeneration, focusing our attention on the effect of POSS concentration within the CS matrix (0.5, 1, and 1.5 equivalents in weight of POSS with respect to CS) on the chemical, physical, rheological, and in vitro biological properties of the final composites. The drug release ability of the synthesized hydrogel scaffolds were also investigated using, as the model drug, ketoprofen, that was included in the scaffold during the gelling procedure, showing a more controlled release for the hybrids with respect to CS (86-91% of drug released after two weeks). The results of the in vitro biological tests performed on human fetal osteoblastic cells (hFOB 1.19) culture demonstrated the great biocompatibility of the hybrid materials. The hybrids, at the different POSS concentrations, showed values of cell mortality superimposable with control cells (11.1 vs. 9.8%), thus revealing the CS/POSS hydrogels as possible candidates for bone tissue engineering applications.

10.
Biomolecules ; 12(11)2022 11 19.
Article in English | MEDLINE | ID: mdl-36421730

ABSTRACT

Bicalutamide (BCL) is a nonsteroidal antiandrogen drug that represents an alternative to castration in the treatment of prostate cancer, due to its relatively long half-life and tolerable side effects. However, it possesses a very low water solubility that can affect its oral bioavailability. In this work, we developed inclusion complexes of BCL with the highly soluble hydroxypropyl-ß-cyclodextrin (HP-ß-CyD) and sulfobutylether-ß-cyclodextrin (SBE-ß-CyD) to increase the water solubility and anticancer activity of BCL. The inclusion complexes were prepared using the freeze-drying method and were then characterized in a solid state via differential scanning calorimetry and X-ray analysis and in solution via phase-solubility studies and UV-vis and NMR spectroscopy. The BCL/HP-ß-CyD and BCL/SBE-ß-CyD inclusion complexes were amorphous and rapidly dissolved in water. Both the 1H-NMR spectra and molecular modeling studies confirmed the penetration of the 2-(trifluoromethyl)benzonitrile ring of BCL within the cavity of both cyclodextrins (CyDs). Due to the consistent improvement of the water solubility of BCL, the inclusion complexes showed higher antiproliferative activity toward the human prostate androgen-independent cell lines, DU-145 and PC-3, with respect to free BCL. These results demonstrate the ability of HP-ß-CyD and SBE-ß-CyD to complex BCL, permitting the realization of liquid formulations with potentially high oral bioavailability and/or possible parenteral administration.


Subject(s)
Cyclodextrins , Male , Humans , Cyclodextrins/pharmacology , Cyclodextrins/chemistry , Nitriles/pharmacology , Solubility , 2-Hydroxypropyl-beta-cyclodextrin/pharmacology , Water/chemistry
11.
Pharmaceutics ; 14(10)2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36297682

ABSTRACT

Cancer-targeted drug delivery systems (DDS) based on carbon nanostructures have shown great promise in cancer therapy due to their ability to selectively recognize specific receptors overexpressed in cancer cells. In this paper, we have explored a green route to synthesize nanobiochar (NBC) endowed with graphene structure from the hydrothermal carbonization (HTC) of orange peels and evaluated the suitability of this nanomaterial as a nanoplatform for cancer therapy. In order to compare the cancer-targeting ability of different widely used targeting ligands (TL), we have conjugated NBC with biotin, riboflavin, folic acid and hyaluronic acid and have tested, in vitro, their biocompatibility and uptake ability towards a human alveolar cancer cell line (A549 cells). The nanosystems which showed the best biological performances-namely, the biotin- and riboflavin- conjugated systems-have been loaded with the poorly water-soluble drug DHF (5,5-dimethyl-6a-phenyl-3-(trimethylsilyl)-6,6a-dihydrofuro[3,2-b]furan-2(5H)-one) and tested for their anticancer activity. The in vitro biological tests demonstrated the ability of both systems to internalize the drug in A549 cells. In particular, the biotin-functionalized NBC caused cell death percentages to more than double with respect to the drug alone. The reported results also highlight the positive effect of the presence of oxygen-containing functional groups, present on the NBC surface, to improve the water dispersion stability of the DDS and thus make the approach of using this nanomaterial as nanocarrier for poorly water-soluble drugs effective.

12.
Molecules ; 27(17)2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36080160

ABSTRACT

The direct oxidation reaction of isoxazolidines plays an important role in organic chemistry, leading to the synthesis of biologically active compounds. In this paper, we report a computational mechanistic study of RuO4-catalyzed oxidation of differently N-substituted isoxazolidines 1a-c. Attention was focused on the endo/exo oxidation selectivity. For all the investigated compounds, the exo attack is preferred to the endo one, showing exo percentages growing in parallel with the stability order of transient carbocations found along the reaction pathway. The study has been supported by experimental data that nicely confirm the modeling results.


Subject(s)
Ruthenium Compounds , Ruthenium , Catalysis , Oxidation-Reduction , Ruthenium/chemistry , Ruthenium Compounds/chemistry
13.
Materials (Basel) ; 15(9)2022 May 03.
Article in English | MEDLINE | ID: mdl-35591617

ABSTRACT

Pure titanium and titanium alloys are widely used in dentistry and orthopedics. However, despite their outstanding mechanical and biological properties, implant failure mainly due to post-operative infection still remains a significant concern. The possibility to develop inherent antibacterial medical devices was here investigated by covalently inserting bioactive ammonium salts onto the surface of titanium metal substrates. Titanium discs have been functionalized with quaternary ammonium salts (QASs) and with oleic acid (OA), affording the Ti-AEMAC Ti-GTMAC, Ti-AUTEAB, and Ti-OA samples, which were characterized by ATR-FTIR and SEM-EDX analyses and investigated for the roughness and hydrophilic behavior. The chemical modifications were shown to deeply affect the surface properties of the metal substrates and, as a consequence, their bio-interaction. The bacterial adhesion tests against the Gram-negative Escherichia Coli and Gram-positive Staphylococcus aureus, at 1.5 and 24 h of bacterial contact, showed good anti-adhesion activity for Ti-AUTEAB and Ti-OA samples, containing a long alkyl chain between the silicon atom and the ammonium functionality. In particular, the Ti-AUTEAB sample showed inhibition of bacteria adhesion against Escherichia Coli of about one log with respect to the other samples, after 1.5 h. The results of this study highlight the importance of chemical functionalization in addressing the antimicrobial activity of metal surfaces and could open new perspectives in the development of inherent antibacterial medical devices.

14.
Polymers (Basel) ; 14(4)2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35215713

ABSTRACT

In this paper, we report the synthesis and characterization of novel coatings based on (3-aminopropyl)-triethoxysilane (AP) mixed with different amounts of glutaraldehyde (GA). The synthesized coatings have been layered on a glass substrate and characterized by optical microscopy and roughness measurements, thermogravimetric analyses and differential scanning calorimetry, contact angle analysis, rheological measurement, and an adhesion test. It was observed that the higher the GA content (up to AP:GA ratio of 0.3), the sooner the crosslinking reaction starts, leading to a coating with increased hydrophobic and adhesion features without compromising the final AP cross-linked network. Hence, the obtained results show the effectiveness of AP modification with GA from the perspective of an application as protective coatings.

15.
Nanomaterials (Basel) ; 11(11)2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34835661

ABSTRACT

The concentration of sodium and potassium ions in biological fluids, such as blood, urine and sweat, is indicative of several basic body function conditions. Therefore, the development of simple methods able to detect these alkaline ions is of outmost importance. In this study, we explored the electrochemical and optical properties of graphene quantum dots (GQDs) combined with the selective chelating ability of the crown ethers 15-crown-5 and 18-crown-6, with the final aim to propose novel composites for the effective detection of these ions. The results obtained comparing the performances of the single GQDs and crown ethers with those of the GQDs-15-crown-5 and GQDs-18-crown-6 composites, have demonstrated the superior properties of these latter. Electrochemical investigation showed that the GQDs based composites can be exploited for the potentiometric detection of Na+ and K+ ions, but selectivity still remains a concern. The nanocomposites showed the characteristic fluorescence emissions of GQDs and crown ethers. The GQDs-18-crown-6 composite exhibited ratiometric fluorescence emission behavior with the variation of K+ concentration, demonstrating its promising properties for the development of a selective fluorescent method for potassium determination.

16.
Cancers (Basel) ; 13(13)2021 Jun 26.
Article in English | MEDLINE | ID: mdl-34206792

ABSTRACT

The timely diagnosis of cancer represents the best chance to increase treatment success and to reduce cancer deaths. Nanomaterials-based biosensors containing graphene quantum dots (GQDs) as a sensing platform show great promise in the early and sensitive detection of cancer biomarkers, due to their unique chemical and physical properties, large surface area and ease of functionalization with different biomolecules able to recognize relevant cancer biomarkers. In this review, we report different advanced strategies for the synthesis and functionalization of GQDs with different agents able to selectively recognize and convert into a signal specific cancer biomarkers such as antigens, enzymes, hormones, proteins, cancer related byproducts, biomolecules exposed on the surface of cancer cells and changes in pH. The developed optical, electrochemical and chemiluminescent biosensors based on GQDs have been shown to ensure the effective diagnosis of several cancer diseases as well as the possibility to evaluate the effectiveness of anticancer therapy. The wide linear range of detection and low detection limits recorded for most of the reported biosensors highlight their great potential in clinics for the diagnosis and management of cancer.

17.
Molecules ; 26(6)2021 Mar 20.
Article in English | MEDLINE | ID: mdl-33804659

ABSTRACT

A series of azastilbene derivatives, characterized by the presence of the 1,2,4-oxadiazole-5-one system as a linker of the two aromatic rings of stilbenes, have been prepared as novel potential inhibitors of p38 MAPK. Biological assays indicated that some of the synthesized compounds are endowed with good inhibitory activity towards the kinase. Molecular modeling data support the biological results showing that the designed compounds possess a reasonable binding mode in the ATP binding pocket of p38α kinase with a good binding affinity.


Subject(s)
Molecular Docking Simulation , Protein Kinase Inhibitors , p38 Mitogen-Activated Protein Kinases , Drug Design , Drug Evaluation, Preclinical , Humans , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , p38 Mitogen-Activated Protein Kinases/chemistry
18.
Biotechnol J ; 16(2): e1900422, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32618417

ABSTRACT

Graphene quantum dots (GQDs), the latest member of the graphene family, have attracted enormous interest in the last few years, due to their exceptional physical, chemical, electrical, optical, and biological properties. Their strong size-dependent photoluminescence and the presence of many reactive groups on the graphene surface allow their multimodal conjugation with therapeutic agents, targeting ligands, polymers, light responsive agents, fluorescent dyes, and functional nanoparticles, making them valuable agents for cancer diagnosis and treatment. In this review, the very recent advances covering the last 3 years on the applications of GQDs as drug delivery systems and theranostic tools for anticancer therapy are discussed, highlighting the relevant factors which regulate their biocompatibility. Among these factors, the size, kind, and degree of surface functionalization have shown to greatly affect their use in biological systems. Toxicity issues, which still represent an open challenge for the clinical development of GQDs based therapeutic agents, are also discussed at cellular and animal levels.


Subject(s)
Quantum Dots , Animals , Drug Delivery Systems , Graphite , Nanoparticles , Neoplasms/drug therapy , Polymers
19.
Nanomaterials (Basel) ; 10(12)2020 Dec 18.
Article in English | MEDLINE | ID: mdl-33352966

ABSTRACT

Due to their outstanding physicochemical properties, the next generation of the graphene family-graphene quantum dots (GQDs)-are at the cutting edge of nanotechnology development. GQDs generally possess many hydrophilic functionalities which allow their dispersibility in water but, on the other hand, could interfere with reactions that are mainly performed in organic solvents, as for cycloaddition reactions. We investigated the 1,3-dipolar cycloaddition (1,3-DCA) reactions of the C-ethoxycarbonyl N-methyl nitrone 1a and the newly synthesized C-diethoxyphosphorylpropilidene N-benzyl nitrone 1b with the surface of GQDs, affording the isoxazolidine cycloadducts isox-GQDs 2a and isox-GQDs 2b. Reactions were performed in mild and eco-friendly conditions, through the use of a natural deep eutectic solvent (NADES), free of chloride or any metal ions in its composition, and formed by the zwitterionic trimethylglycine as the -bond acceptor, and glycolic acid as the hydrogen-bond donor. The results reported in this study have for the first time proved the possibility of performing cycloaddition reactions directly to the p-cloud of the GQDs surface. The use of DES for the cycloaddition reactions on GQDs, other than to improve the solubility of reactants, has been shown to bring additional advantages because of the great affinity of these green solvents with aromatic systems.

20.
Polymers (Basel) ; 12(4)2020 Mar 31.
Article in English | MEDLINE | ID: mdl-32244275

ABSTRACT

In this paper, a new formulation of biodegradable and bioresorbable chitosan-based hydrogel for controlled drug release was investigated. A chitosan-dendrimer-hydroxyapatite hydrogel, obtained by covalently grafting chitosan powder with an hyperbranched PAMAM dendrimer followed by in-situ precipitation of hydroxyapatite and gelification, was synthesized and characterized by FTIR, NMR, TGA, XRD and rheological studies. The hydrogels have been also doped with an anti-inflammatory drug (ketoprofen) in order to investigate their drug release properties. Chemical and chemical-physical characterizations confirmed the successful covalent functionalization of chitosan with PAMAM and the synthesis of nanostructured hydroxyapatite. The developed hydrogel made it possible to obtain an innovative system with tunable rheological and drug-releasing properties relative to the well-known formulation containing chitosan and hydroxyapatite powder. The developed hydrogel showed different rheological and drug-releasing properties of chitosan matrix mixed with hydroxyapatite as a function of dendrimer molecular weight; therefore, the chitosan-dendrimer-hydroxyapatite hydrogel can couple the well-known osteoconductive properties of hydroxyapatite with the drug-release behavior and good processability of chitosan-dendrimer hydrogels, opening new approaches in the field of tissue engineering based on biopolymeric scaffolds.

SELECTION OF CITATIONS
SEARCH DETAIL
...