Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Environ Sci Technol ; 55(22): 15013-15024, 2021 11 16.
Article in English | MEDLINE | ID: mdl-34714051

ABSTRACT

Large-scale carbon capture, utilization, and storage (CCUS) requires development of critical infrastructure to connect capture locations to geological storage sites. Here, we investigate what government policies would be required to make the development of CO2 pipelines and large-scale CCUS in the power sector economically viable. We focus on the transition from conventional coal to non-CO2-emitting natural gas-fired Allam-cycle power with CCUS and study a system in which 156 Allam-cycle power generators representing 100 GW of capacity send their captured CO2 emissions to three geological storage locations in the central United States through 7500 miles of new pipeline. Enabling policies for this system include low-interest government loans of approximately $20 billion for pipeline construction and an extended 20-year Section 45Q tax credit, or similar longer-term carbon price incentive. Additional policy support will be needed to enable initial construction of pipelines and early-mover power generators, such as cost-sharing, governments assuming future demand risk, or increased subsidies to early movers. The proposed system will provide reliable, dispatchable, flexible zero-emission power generation, complementing the intermittent generation by renewables in a decarbonized U.S. power sector. The proposed pipeline network could also connect into future regional infrastructure networks and facilitate large-scale carbon management.


Subject(s)
Carbon Dioxide , Coal , Carbon Dioxide/analysis , Geology , Natural Gas , Policy , Power Plants , United States
3.
Sci Total Environ ; 651(Pt 2): 1849-1856, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30321717

ABSTRACT

Recent studies have reported methane (CH4) emissions from abandoned and active oil and gas infrastructure across the United States, where measured emissions show regional variability. To investigate similar phenomena in West Virginia, we measure and characterize emissions from abandoned and active conventional oil and gas wells. In addition, we reconcile divergent regional CH4 emissions estimates by comparing our West Virginia emissions estimates with those from other states in the United States. We find the CH4 emission factors from 112 plugged and 147 unplugged wells in West Virginia are 0.1 g CH4 h-1 and 3.2 g CH4 h-1, respectively. The highest emitting unplugged abandoned wells in WV are those most recently abandoned, with the mean emission of wells abandoned between 1993 and 2015 of 16 g CH4 h-1 compared to the mean of those abandoned before 1993 of 3 × 10-3 g CH4 h-1. Using field observations at a historic mining area as a proxy for state-wide drilling activity in the late 19th/early 20th century, we estimate the number of abandoned wells in WV at between 60,000 and 760,000 wells. Methane emission factors from active conventional wells were estimated at 138 g CH4 h-1. We did not find an emission pattern relating to age of wells or operator for active wells, however, the CH4 emission factor for active conventional wells was 7.5 times larger than the emission factor used by the EPA for conventional oil and gas wells. Our results suggest that well emission factors for active and abandoned wells can vary within the same geologic formation and may be affected by differences in state regulations. Therefore, accounting for state-level variations is critical for accuracy in greenhouse gas emissions inventories, which are used to guide emissions reduction strategies.

4.
Proc Natl Acad Sci U S A ; 115(38): E8815-E8824, 2018 09 18.
Article in English | MEDLINE | ID: mdl-30181267

ABSTRACT

In February 2018, the United States enacted significant financial incentives for carbon capture, utilization, and storage (CCUS) that will make capture from the lowest-capture-cost sources economically viable. The largest existing low-capture-cost opportunity is from ethanol fermentation at biorefineries in the Midwest. An impediment to deployment of carbon capture at ethanol biorefineries is that most are not close to enhanced oil recovery (EOR) fields or other suitable geological formations in which the carbon dioxide could be stored. Therefore, we analyze the viability of a pipeline network to transport carbon dioxide from Midwest ethanol biorefineries to the Permian Basin in Texas, which has the greatest current carbon dioxide demand for EOR and large potential for expansion. We estimate capture and transport costs and perform economic analysis for networks under three pipeline financing scenarios representing different combinations of commercial and government finance. Without government finance, we find that a network earning commercial rates of return would not be viable. With 50% government financing for pipelines, 19 million tons of carbon dioxide per year could be captured and transported profitably. Thirty million tons per year could be captured with full government pipeline financing, which would double global anthropogenic carbon capture and increase the United States' carbon dioxide EOR industry by 50%. Such a development would face challenges, including coordination between governments and industries, pressing timelines, and policy uncertainties, but is not unprecedented. This represents an opportunity to considerably increase CCUS in the near-term and develop long-term transport infrastructure facilitating future growth.

5.
Environ Sci Technol ; 51(23): 13779-13787, 2017 Dec 05.
Article in English | MEDLINE | ID: mdl-29086564

ABSTRACT

Hydraulic fracturing in shale gas formations involves the injection of large volumes of aqueous fluid deep underground. Only a small proportion of the injected water volume is typically recovered, raising concerns that the remaining water may migrate upward and potentially contaminate groundwater aquifers. We implement a numerical model of two-phase water and gas flow in a shale gas formation to test the hypothesis that the remaining water is imbibed into the shale rock by capillary forces and retained there indefinitely. The model includes the essential physics of the system and uses the simplest justifiable geometrical structure. We apply the model to simulate wells from a specific well pad in the Horn River Basin, British Columbia, where there is sufficient available data to build and test the model. Our simulations match the water and gas production data from the wells remarkably closely and show that all the injected water can be accounted for within the shale system, with most imbibed into the shale rock matrix and retained there for the long term.


Subject(s)
Groundwater , Hydraulic Fracking , Natural Gas , British Columbia , Oil and Gas Fields , Water Wells
6.
Proc Natl Acad Sci U S A ; 113(48): 13636-13641, 2016 11 29.
Article in English | MEDLINE | ID: mdl-27849603

ABSTRACT

Recent measurements of methane emissions from abandoned oil/gas wells show that these wells can be a substantial source of methane to the atmosphere, particularly from a small proportion of high-emitting wells. However, identifying high emitters remains a challenge. We couple 163 well measurements of methane flow rates; ethane, propane, and n-butane concentrations; isotopes of methane; and noble gas concentrations from 88 wells in Pennsylvania with synthesized data from historical documents, field investigations, and state databases. Using our databases, we (i) improve estimates of the number of abandoned wells in Pennsylvania; (ii) characterize key attributes that accompany high emitters, including depth, type, plugging status, and coal area designation; and (iii) estimate attribute-specific and overall methane emissions from abandoned wells. High emitters are best predicted as unplugged gas wells and plugged/vented gas wells in coal areas and appear to be unrelated to the presence of underground natural gas storage areas or unconventional oil/gas production. Repeat measurements over 2 years show that flow rates of high emitters are sustained through time. Our attribute-based methane emission data and our comprehensive estimate of 470,000-750,000 abandoned wells in Pennsylvania result in estimated state-wide emissions of 0.04-0.07 Mt (1012 g) CH4 per year. This estimate represents 5-8% of annual anthropogenic methane emissions in Pennsylvania. Our methodology combining new field measurements with data mining of previously unavailable well attributes and numbers of wells can be used to improve methane emission estimates and prioritize cost-effective mitigation strategies for Pennsylvania and beyond.

7.
Environ Sci Technol ; 49(15): 9222-9, 2015 Aug 04.
Article in English | MEDLINE | ID: mdl-26186496

ABSTRACT

Recent studies suggest the possibility of CO2 sequestration in depleted shale gas formations, motivated by large storage capacity estimates in these formations. Questions remain regarding the dynamic response and practicality of injection of large amounts of CO2 into shale gas wells. A two-component (CO2 and CH4) model of gas flow in a shale gas formation including adsorption effects provides the basis to investigate the dynamics of CO2 injection. History-matching of gas production data allows for formation parameter estimation. Application to three shale gas-producing regions shows that CO2 can only be injected at low rates into individual wells and that individual well capacity is relatively small, despite significant capacity variation between shale plays. The estimated total capacity of an average Marcellus Shale well in Pennsylvania is 0.5 million metric tonnes (Mt) of CO2, compared with 0.15 Mt in an average Barnett Shale well. Applying the individual well estimates to the total number of existing and permitted planned wells (as of March, 2015) in each play yields a current estimated capacity of 7200-9600 Mt in the Marcellus Shale in Pennsylvania and 2100-3100 Mt in the Barnett Shale.


Subject(s)
Carbon Dioxide/analysis , Geologic Sediments/chemistry , Models, Theoretical , Oil and Gas Fields/chemistry , Computer Simulation , Methane/analysis , Natural Gas/analysis , Pennsylvania , Pressure , Time Factors
8.
Environ Sci Technol ; 49(7): 4757-64, 2015 Apr 07.
Article in English | MEDLINE | ID: mdl-25768798

ABSTRACT

Abandoned oil and gas (AOG) wells can provide pathways for subsurface fluid migration, which can lead to groundwater contamination and gas emissions to the atmosphere. Little is known about the millions of AOG wells in the U.S. and abroad. Recently, we acquired data on methane emissions from 42 plugged and unplugged AOG wells in five different counties across western Pennsylvania. We used historical documents to estimate well depths and used these depths with the emissions data to estimate the wells' effective permeabilities, which capture the combined effects of all leakage pathways within and around the wellbores. We find effective permeabilities to range from 10(-6) to 10(2) millidarcies, which are within the range of previous estimates. The effective permeability data presented here provide perspective on older AOG wells and are valuable when considering the leakage potential of AOG wells in a wide range of applications, including geologic storage of carbon dioxide, natural gas storage, and oil and gas development.


Subject(s)
Methane/analysis , Oil and Gas Fields , Carbon Dioxide/analysis , Groundwater , Pennsylvania , Permeability , Water Pollution
9.
Ground Water ; 53(3): 362-77, 2015.
Article in English | MEDLINE | ID: mdl-25662534

ABSTRACT

Geologic carbon sequestration (GCS) is being considered as a climate change mitigation option in many future energy scenarios. Mathematical modeling is routinely used to predict subsurface CO2 and resident brine migration for the design of injection operations, to demonstrate the permanence of CO2 storage, and to show that other subsurface resources will not be degraded. Many processes impact the migration of CO2 and brine, including multiphase flow dynamics, geochemistry, and geomechanics, along with the spatial distribution of parameters such as porosity and permeability. In this article, we review a set of multiphase modeling approaches with different levels of conceptual complexity that have been used to model GCS. Model complexity ranges from coupled multiprocess models to simplified vertical equilibrium (VE) models and macroscopic invasion percolation models. The goal of this article is to give a framework of conceptual model complexity, and to show the types of modeling approaches that have been used to address specific GCS questions. Application of the modeling approaches is shown using five ongoing or proposed CO2 injection sites. For the selected sites, the majority of GCS models follow a simplified multiphase approach, especially for questions related to injection and local-scale heterogeneity. Coupled multiprocess models are only applied in one case where geomechanics have a strong impact on the flow. Owing to their computational efficiency, VE models tend to be applied at large scales. A macroscopic invasion percolation approach was used to predict the CO2 migration at one site to examine details of CO2 migration under the caprock.


Subject(s)
Carbon Dioxide/chemistry , Carbon Sequestration , Geological Phenomena , Groundwater , Models, Theoretical , Porosity , Salts/chemistry
10.
Proc Natl Acad Sci U S A ; 111(51): 18173-7, 2014 Dec 23.
Article in English | MEDLINE | ID: mdl-25489074

ABSTRACT

Abandoned oil and gas wells provide a potential pathway for subsurface migration and emissions of methane and other fluids to the atmosphere. Little is known about methane fluxes from the millions of abandoned wells that exist in the United States. Here, we report direct measurements of methane fluxes from abandoned oil and gas wells in Pennsylvania, using static flux chambers. A total of 42 and 52 direct measurements were made at wells and at locations near the wells ("controls") in forested, wetland, grassland, and river areas in July, August, October 2013 and January 2014, respectively. The mean methane flow rates at these well locations were 0.27 kg/d/well, and the mean methane flow rate at the control locations was 4.5 × 10(-6) kg/d/location. Three out of the 19 measured wells were high emitters that had methane flow rates that were three orders of magnitude larger than the median flow rate of 1.3 × 10(-3) kg/d/well. Assuming the mean flow rate found here is representative of all abandoned wells in Pennsylvania, we scaled the methane emissions to be 4-7% of estimated total anthropogenic methane emissions in Pennsylvania. The presence of ethane, propane, and n-butane, along with the methane isotopic composition, indicate that the emitted methane is predominantly of thermogenic origin. These measurements show that methane emissions from abandoned oil and gas wells can be significant. The research required to quantify these emissions nationally should be undertaken so they can be accurately described and included in greenhouse gas emissions inventories.


Subject(s)
Methane/analysis , Oil and Gas Fields , Environmental Monitoring , Pennsylvania
11.
Ground Water ; 51(4): 525-38, 2013.
Article in English | MEDLINE | ID: mdl-23745958

ABSTRACT

A series of Mb 3.8-5.5 induced seismic events in the midcontinent region, United States, resulted from injection of fluid either into a basal sedimentary reservoir with no underlying confining unit or directly into the underlying crystalline basement complex. The earthquakes probably occurred along faults that were likely critically stressed within the crystalline basement. These faults were located at a considerable distance (up to 10 km) from the injection wells and head increases at the hypocenters were likely relatively small (∼70-150 m). We present a suite of simulations that use a simple hydrogeologic-geomechanical model to assess what hydrogeologic conditions promote or deter induced seismic events within the crystalline basement across the midcontinent. The presence of a confining unit beneath the injection reservoir horizon had the single largest effect in preventing induced seismicity within the underlying crystalline basement. For a crystalline basement having a permeability of 2 × 10(-17) m(2) and specific storage coefficient of 10(-7) /m, injection at a rate of 5455 m(3) /d into the basal aquifer with no underlying basal seal over 10 years resulted in probable brittle failure to depths of about 0.6 km below the injection reservoir. Including a permeable (kz = 10(-13) m(2) ) Precambrian normal fault, located 20 m from the injection well, increased the depth of the failure region below the reservoir to 3 km. For a large permeability contrast between a Precambrian thrust fault (10(-12) m(2) ) and the surrounding crystalline basement (10(-18) m(2) ), the failure region can extend laterally 10 km away from the injection well.


Subject(s)
Earthquakes , Extraction and Processing Industry , Geologic Sediments , Geology/methods , Earthquakes/classification , Groundwater , Models, Theoretical , Natural Gas , Oil and Gas Fields , United States
12.
Ground Water ; 47(5): 627-38, 2009.
Article in English | MEDLINE | ID: mdl-19563425

ABSTRACT

The relentless increase of anthropogenic carbon dioxide emissions and the associated concerns about climate change have motivated new ideas about carbon-constrained energy production. One technological approach to control carbon dioxide emissions is carbon capture and storage, or CCS. The underlying idea of CCS is to capture the carbon before it emitted to the atmosphere and store it somewhere other than the atmosphere. Currently, the most attractive option for large-scale storage is in deep geological formations, including deep saline aquifers. Many physical and chemical processes can affect the fate of the injected CO2, with the overall mathematical description of the complete system becoming very complex. Our approach to the problem has been to reduce complexity as much as possible, so that we can focus on the few truly important questions about the injected CO2, most of which involve leakage out of the injection formation. Toward this end, we have established a set of simplifying assumptions that allow us to derive simplified models, which can be solved numerically or, for the most simplified cases, analytically. These simplified models allow calculation of solutions to large-scale injection and leakage problems in ways that traditional multicomponent multiphase simulators cannot. Such simplified models provide important tools for system analysis, screening calculations, and overall risk-assessment calculations. We believe this is a practical and important approach to model geological storage of carbon dioxide. It also serves as an example of how complex systems can be simplified while retaining the essential physics of the problem.


Subject(s)
Carbon Dioxide/analysis , Models, Theoretical , Environmental Monitoring
13.
Environ Sci Technol ; 43(3): 743-9, 2009 Feb 01.
Article in English | MEDLINE | ID: mdl-19245011

ABSTRACT

Geological storage of carbon dioxide (CO2) is likely to be an integral component of any realistic plan to reduce anthropogenic greenhouse gas emissions. In conjunction with large-scale deployment of carbon storage as a technology, there is an urgent need for tools which provide reliable and quick assessments of aquifer storage performance. Previously, abandoned wells from over a century of oil and gas exploration and production have been identified as critical potential leakage paths. The practical importance of abandoned wells is emphasized by the correlation of heavy CO2 emitters (typically associated with industrialized areas) to oil and gas producing regions in North America. Herein, we describe a novel framework for predicting the leakage from large numbers of abandoned wells, forming leakage paths connecting multiple subsurface permeable formations. The framework is designed to exploit analytical solutions to various components of the problem and, ultimately, leads to a grid-free approximation to CO2 and brine leakage rates, as well as fluid distributions. We apply our model in a comparison to an established numerical solverforthe underlying governing equations. Thereafter, we demonstrate the capabilities of the model on typical field data taken from the vicinity of Edmonton, Alberta. This data set consists of over 500 wells and 7 permeable formations. Results show the flexibility and utility of the solution methods, and highlight the role that analytical and semianalytical solutions can play in this important problem.


Subject(s)
Carbon Dioxide/chemistry , Geology , Models, Theoretical , Algorithms
14.
Environ Sci Technol ; 39(2): 602-11, 2005 Jan 15.
Article in English | MEDLINE | ID: mdl-15707061

ABSTRACT

Capture and subsequent injection of carbon dioxide into deep geological formations is being considered as a means to reduce anthropogenic emissions of CO2 to the atmosphere. If such a strategy is to be successful, the injected CO2 must remain within the injection formation for long periods of time, at least several hundred years. Because mature continental sedimentary basins have a century-long history of oil and gas exploration and production, they are characterized by large numbers of existing oil and gas wells. For example, more than 1 million such wells have been drilled in the state of Texas in the United States. These existing wells represent potential leakage pathways for injected CO2. To analyze leakage potential, modeling tools are needed that predict leakage rates and patterns in systems with injection and potentially leaky wells. A new semianalytical solution framework allows simple and efficient prediction of leakage rates for the case of injection of supercritical CO2 into a brine-saturated deep aquifer. The solution predicts the extent of the injected CO2 plume, provides leakage rates through an abandoned well located at an arbitrary distance from the injection well, and estimates the CO2 plume extent in the overlying aquifer into which the fluid leaks. Comparison to results from a numerical multiphase flow simulator show excellent agreement. Example calculations show the importance of outer boundary conditions, the influence of both density and viscosity contrasts in the resulting solutions, and the potential importance of local upconing around the leaky well. While several important limiting assumptions are required, the new semianalytical solution provides a simple and efficient procedure for estimation of CO2 leakage for problems involving one injection well, one leaky well, and multiple aquifers separated by impermeable aquitards.


Subject(s)
Carbon Dioxide/analysis , Geology , Models, Theoretical , Petroleum , Equipment Failure , Forecasting , Geological Phenomena , Permeability , Soil , Texas , Volatilization
15.
J Contam Hydrol ; 56(3-4): 175-92, 2002 Jun.
Article in English | MEDLINE | ID: mdl-12102317

ABSTRACT

In theories of multiphase flow through porous media, capillary pressure-saturation and relative permeability-saturation curves are assumed to be intrinsic properties of the medium. Moreover, relative permeability is assumed to be a scalar property. However, numerous theoretical and experimental works have shown that these basic assumptions may not be valid. For example, relative permeability is known to be affected by the flow velocity (or pressure gradient) at which the measurements are carried out. In this article, it is suggested that the nonuniqueness of capillary pressure-relative permeability-saturation relationships is due to the presence of microheterogeneities within a laboratory sample. In order to investigate this hypothesis, a large number of "numerical experiments" are carried out. A numerical multiphase flow model is used to simulate the procedures that are commonly used in the laboratory for the measurement of capillary pressure and relative permeability curves. The dimensions of the simulation domain are similar to those of a typical laboratory sample (a few centimeters in each direction). Various combinations of boundary conditions and soil heterogeneity are simulated and average capillary pressure, saturation, and relative permeability for the "soil sample" are obtained. It is found that the irreducible water saturation is a function of the capillary number; the smaller the capillary number, the larger the irreducible water saturation. Both drainage and imbibition capillary pressure curves are found to be strongly affected by heterogeneities and boundary conditions. Relative permeability is also found to be affected by the boundary conditions; this is especially true about the nonaqueous phase permeability. Our results reveal that there is much need for laboratory experiments aimed at investigating the interplay of boundary conditions and microheterogeneities and their effect on capillary pressure and relative permeability.


Subject(s)
Models, Theoretical , Soil/analysis , Water Movements , Water Pollutants, Chemical/analysis , Water/chemistry , Computer Simulation , Permeability , Porosity , Pressure , Silicon Dioxide/analysis , Soil Pollutants/analysis , Tetrachloroethylene/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...