Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Acta Chim Slov ; 71(2): 256-263, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38919102

ABSTRACT

Breast cancer cell growth is often dependent on the presence of steroidal hormones. The 17ß-hydroxysteroid dehydrogenase type 1 isoform (17ßHSD1) catalyzes NADPH-dependent conversion of estrone to estradiol, a more potent estrogen, and represents potential drug target for breast cancer treatment.  To provide active enzyme for inhibitor screening, 17ßHSD1 is usually expressed in insect or mammalian cells, or isolated from human placenta. In the present study we describe a simple protocol for expression and purification of active human 17ßHSD1 from BL21(DE3) Escherichia coli cells. Soluble human 17ßHSD1 was expressed using a pET28a(+)-based plasmid, which encodes a hexahistidine tag fused to the N-terminus of the protein, and purified by nickel affinity chromatography. The enzyme activity of purified 17ßHSD1 was verified by three methods: thin-layer chromatography, an alkali assay and a spectroscopic assay. These non-radioactive enzyme assays require only standard laboratory equipment, and can be used for screening compounds that modulate 17ßHSD1 activity.


Subject(s)
17-Hydroxysteroid Dehydrogenases , Escherichia coli , Humans , Escherichia coli/genetics , Escherichia coli/metabolism , 17-Hydroxysteroid Dehydrogenases/isolation & purification , 17-Hydroxysteroid Dehydrogenases/metabolism , 17-Hydroxysteroid Dehydrogenases/genetics , 17-Hydroxysteroid Dehydrogenases/antagonists & inhibitors , 17-Hydroxysteroid Dehydrogenases/chemistry , Chromatography, Affinity , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/biosynthesis
2.
J Steroid Biochem Mol Biol ; 242: 106545, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38762058

ABSTRACT

Most breast and prostate cancers are caused by abnormal production or action of steroidal hormones. Hormonal drugs based on steroid scaffolds represent a significant class of chemotherapeutics that are routinely used in chemotherapy. In this study, the synthesis of new 17a-homo lactone and 17α-(pyridine-2-ylmethyl) androstane derivatives with hydrazide and semicarbazone motifs is presented. All compounds were screened for their effect on cell viability against a panel of five cancer cell lines and one healthy cell line. Two compounds showed significant cytotoxicity against cancer cells, with low toxicity against healthy cells. The relative binding affinities of compounds for the ligand-binding domains of estrogen receptor α, estrogen receptor ß, androgen receptor and glucocorticoid receptor were tested using a fluorescence screen in yeast. Potential for inhibition of aldo-keto reductase 1C3 and 1C4 activity was measured in vitro. Experimental results are analyzed in the context of molecular docking simulations. Our results could help guide design of steroid compounds with improved anticancer properties against androgen- and estrogen-dependent cancers.


Subject(s)
Antineoplastic Agents , Molecular Docking Simulation , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Hydrazines/pharmacology , Hydrazines/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Steroids/chemistry , Steroids/pharmacology , Semicarbazones/pharmacology , Semicarbazones/chemistry , Semicarbazones/chemical synthesis , Thiosemicarbazones/pharmacology , Thiosemicarbazones/chemistry , Drug Screening Assays, Antitumor
3.
Anal Biochem ; 690: 115529, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38582243

ABSTRACT

Alchemilla vulgaris L., Trifolium pratense L. and Glycyrrhiza glabra L. are important remedies in traditional medicine, known for many usages, including treating gynecological diseases. Despite folkloric use of the plant materials, there is a lack of scientific data to support their therapeutic application. The aims of the present study were to evaluate the relative binding affinities (RBAs) of plant-derived phytoestrogens for estrogen receptor ß (ERß) using fluorescent biosensor in yeast and to apply this assay for the assessment of the potential of plant materials towards ERs and treatment of estrogen-related disorders. Ligand-binding domain of ERß fused with yellow fluorescent protein (ERß LBD-YFP) was expressed in S. cerevisiae and fluorescence was detected by fluorimetry and fluorescence microscopy. Structural basis for experimental results was explored by molecular docking. Yeast-based fluorescent assay was successfully optimized and applied for identification of natural phenolic compounds and phytoestrogen-rich plant extracts that interact with ERß-LBD, making this biosensor a valuable tool for screening estrogenic potential of a variety of plant extracts. This assay can be used for preliminary testing of plant-derived or fungal extracts, but also other sources of environmental substances with ER-modulating activity in order to assess their possible effects on the female reproductive system.

4.
Future Med Chem ; 16(11): 1127-1145, 2024.
Article in English | MEDLINE | ID: mdl-38629440

ABSTRACT

Aim: The aim of this study was the synthesis of steroid compounds with heterocyclic rings and good anticancer properties. Materials & methods: The synthesis, in silico and in vitro anticancer testing of novel pyridin-2-yl estra-1,3,5(10)-triene derivatives was performed. Results: All synthesized compounds have shown promising results for, antiproliferative activity, relative binding affinities for the ligand binding domains of estrogen receptors α, ß and androgen receptor, aromatase binding potential, and inhibition of AKR1C3 enzyme. Conclusion: 3-Benzyloxy (17E)-pycolinilidene derivative 9 showed the best antitumor potential against MDA-MB-231 cell line, an activity that can be explained by its moderate inhibition of AKR1C3. Molecular docking simulation indicates that it binds to AKR1C3 in a very similar orientation and geometry as steroidal inhibitor EM1404.


The series of pyridine-containing estra-1,3,5(10)-triene derivatives was synthesized. One novel derivative stood out by its excellent activity against the MDA-MB-231 cell line. This activity can be explained by its moderate inhibition of the AKR1C3 enzyme.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Drug Screening Assays, Antitumor , Molecular Docking Simulation , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cell Line, Tumor , Aldo-Keto Reductase Family 1 Member C3/antagonists & inhibitors , Aldo-Keto Reductase Family 1 Member C3/metabolism , Structure-Activity Relationship , Molecular Structure , Receptors, Androgen/metabolism , Aromatase/metabolism , Estrogen Receptor alpha/metabolism , Estrogen Receptor alpha/antagonists & inhibitors
5.
J Steroid Biochem Mol Biol ; 233: 106362, 2023 10.
Article in English | MEDLINE | ID: mdl-37451557

ABSTRACT

Cancer remains a major health concern worldwide. The most frequently diagnosed types of cancer are caused by abnormal production or action of steroid hormones. In the present study, the synthesis and structural characterization of new heterocyclic androstane derivatives with D-homo lactone, 17α-(pyridine-2''-ylmethyl) or 17(E)-(pyridine-2''-ylmethylidene) moiety are presented. All compounds were evaluated for their anti-proliferative activity against HeLa cervical cancer cell line and non-cancerous kidney MDCK cells, where A-homo lactam compound 9A showed the greatest selectivity. Based on in vitro binding assays, N-formyl lactam compound 18 appeared to be the strong and isoform-selective ligand for ERα, while compound 9A displayed binding affinity for the GR-LBD, but also inhibited aldo-keto reductase 1C4 enzyme. Out of four selected compounds, methylpyrazolo derivative 13 showed potential for aromatase binding, while in silico studies provided insight into experimentally confirmed protein-ligand interactions.


Subject(s)
Androstanes , Antineoplastic Agents , Humans , Ligands , Androstanes/pharmacology , Androstanes/chemistry , Steroids/metabolism , Lactams/pharmacology , Structure-Activity Relationship , Cell Proliferation , Molecular Structure , Drug Screening Assays, Antitumor , Cell Line, Tumor
6.
RSC Med Chem ; 14(2): 341-355, 2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36846371

ABSTRACT

Aldo-keto reductase 1C3 (AKR1C3) catalyzes the reduction of androstenedione to testosterone and reduces the effectiveness of chemotherapeutics. AKR1C3 is a target for treatment of breast and prostate cancer and AKR1C3 inhibition could be an effective adjuvant therapy in the context of leukemia and other cancers. In the present study, steroidal bile acid fused tetrazoles were screened for their ability to inhibit AKR1C3. Four C24 bile acids with C-ring fused tetrazoles were moderate to strong AKR1C3 inhibitors (37-88% inhibition), while B-ring fused tetrazoles had no effect on AKR1C3 activity. Based on a fluorescence assay in yeast cells, these four compounds displayed no affinity for estrogen receptor-α, or the androgen receptor, suggesting a lack of estrogenic or androgenic effects. A top inhibitor showed specificity for AKR1C3 over AKR1C2, and inhibited AKR1C3 with an IC50 of ∼7 µM. The structure of AKR1C3·NADP+ in complex with this C-ring fused bile acid tetrazole was determined by X-ray crystallography at 1.4 Å resolution, revealing that the C24 carboxylate is anchored to the catalytic oxyanion site (H117, Y55); meanwhile the tetrazole interacts with a tryptophan (W227) important for steroid recognition. Molecular docking predicts that all four top AKR1C3 inhibitors bind with nearly identical geometry, suggesting that C-ring bile acid fused tetrazoles represent a new class of AKR1C3 inhibitors.

7.
Colloids Surf B Biointerfaces ; 216: 112597, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35636320

ABSTRACT

Chemically modified steroids have a long history as anti-neoplastic drugs. Incorporation of a lactone moiety in the steroid nucleus, as in previously obtained 3ß-acetoxy-17-oxa-17a-homoandrost-5-en-16-one (A) and 3ß-hidroxy-17-oxa-17a-homoandrost-5-en-16-one (B), often results in enhanced anticancer properties. In this work, chitosan-based (Ch) nanoparticles were created and loaded with potent anticancer steroidal compounds, A and B. Changes to hormone receptor binding and cytotoxicity were then measured. In agreement with our previous results for A and B, A- and B-loaded Ch displayed cytotoxic properties against cancer cell lines. Both A-Ch and B-Ch showed activity toward estrogen negative breast cancer (MDA-MB-231) and androgen negative prostate cancer cell lines (PC-3). Greater selectivity toward cancer cells versus healthy lung fibroblast (MRC-5) was observed for B-Ch particles. Cell viability and cytotoxicity measurements after a recovery period indicate more robust recovery of healthy cells versus malignant cells. Compounds A and B or their Ch-encapsulated forms were shown to have negligible affinity for the ligand binding domain of estrogen receptor ß or the androgen receptor in a fluorescent yeast screen, suggesting a lack of estrogenicity and androgenicity. Steroid-loaded chitosan nanoparticles display strong cytotoxicity towards MDA-MB-231 and PC-3 with a lack of hormone activity, indicating their safety and efficacy.


Subject(s)
Breast Neoplasms , Chitosan , Nanoparticles , Prostatic Neoplasms , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Chitosan/chemistry , Hormones , Humans , Lactones , Male , Steroids/chemistry , Steroids/pharmacology
8.
Mol Inform ; 41(10): e2100256, 2022 10.
Article in English | MEDLINE | ID: mdl-35393780

ABSTRACT

Human aldo-keto reductase 1C isoforms (AKR1C1-C4) catalyze reduction of endogenous and exogenous compounds, including therapeutic drugs, and are associated with chemotherapy resistance. AKR1C2 is involved in metastatic processes and is a target for the treatment of various cancers. Here we used molecular docking to explore the potential of a series of eleven bile acid methyl esters as AKR1C2 inhibitors. Autodock 4.2 ranked 10 of the 11 test compounds above a decoy set generated based on ursodeoxycholic acid, a known AKR1C2 inhibitor, while 5 of these 10 ranked above 94 % of decoys in Autodock Vina. Seven inactives reported in the literature not to inhibit AKR1C2 ranked below the decoy threshold: 5 of these are specific inhibitors of AKR1C3, a related isoform. Using the same parameters, Autodock Vina identified steroidal analogs of AKR1C substrates, bile acids, and AKR1C inhibitors in the top 5 % of a virtual screen of a natural product library. In experimental assays, 6 out of 11 of the tested bile acid methyl esters inhibited >50 % of AKR1C2 activity, while 2 compounds were strong AKR1C3 inhibitors. Potential off-target interactions with the glucocorticoid receptor were measured using a yeast-based fluorescence assay, where results suggest that the methyl ester could interfere with binding. The top ranking compound based on docking and experimental results showed dose-dependent inhibition of AKR1C2 with an IC50 of ∼3.6 µM. Molecular dynamics simulations (20 ns) were used to explore potential interactions between a bile acid methyl ester and residues in the AKR1C2 active site. Our molecular docking results identify AKR1C2 as a target for bile acid methyl esters, which combined with virtual screening results could provide new directions for researchers interested in synthesis of AKR1C inhibitors.


Subject(s)
Biological Products , Molecular Dynamics Simulation , Aldo-Keto Reductases/metabolism , Bile Acids and Salts , Esters , Humans , Molecular Docking Simulation , Protein Isoforms/metabolism , Receptors, Glucocorticoid , Ursodeoxycholic Acid
9.
RSC Med Chem ; 12(2): 278-287, 2021 Mar 04.
Article in English | MEDLINE | ID: mdl-34046616

ABSTRACT

Herein, we present microwave-assisted AlCl3 catalyzed oxidation of bile acid hydroxyl groups in the presence of Oxone® in water media. Significant rate enhancements were observed for Wolff-Kishner reduction of synthesized bile acids oxo derivatives to the 5ß-cholanic acid. Reaction of amidation of the simplest bile acid and aminolysis of the deoxycholic acid was accomplished in the absence of solvent and catalysts under sealed vessel microwave conditions. Because 5ß-cholanic acid reportedly modulates glucocorticoid receptor signaling in cell models of Parkinson's disease, we tested the affinity of 5ß-cholanic acid and deoxycholic acid derivatives for the glucocorticoid receptor in vitro using a yeast-based fluorescent screen. Treatment of GR-expressing yeast with prednisolone resulted in a dose-dependent increase in fluorescence; whereas 5ß-cholanic acid binds to the glucocorticoid receptor with more moderate affinity. Similarly, molecular docking also suggests that 5ß-cholanic acid can bind to the glucocorticoid receptor, with similar geometry to known GR ligands.

10.
Medchemcomm ; 9(6): 969-981, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-30108986

ABSTRACT

New A-ring pyridine fused androstanes in 17a-homo-17-oxa (d-homo lactone), 17α-picolyl or 17(E)-picolinylidene series were synthesized and validated by X-ray crystallography, HRMS, IR and NMR spectroscopy. Novel compounds 3, 5, 8 and 12 were prepared by treatment of 4-en-3-one or 4-ene-3,6-dione d-modified androstane derivatives with propargylamine catalyzed by Cu(ii), and evaluated for potential anticancer activity in vitro using human cancer cell lines and recombinant targets of steroidal anti-cancer drugs. Pyridine fusion to position 3,4 of the A-ring may dramatically enhance affinity of 17α-picolyl compounds for CYP17 while conferring selective antiproliferative activity against PC-3 cells. Similarly, pyridine fusion to the A-ring of steroidal d-homo lactones led to identification of new inhibitors of aldo-keto reductase 1C3, an enzyme targeted in acute myeloid leukemia, breast and prostate cancers. One A-pyridine d-lactone steroid 5 also has selective submicromolar antiproliferative activity against HT-29 colon cancer cells. None of the new derivatives have affinity for estrogen or androgen receptors in a yeast screen, suggesting negligible estrogenicity and androgenicity. Combined, our results suggest that A-ring pyridine fusions have potential in modulating the anticancer activity of steroidal compounds.

11.
Steroids ; 130: 22-30, 2018 02.
Article in English | MEDLINE | ID: mdl-29224741

ABSTRACT

Synthesis and biological evaluation of steroidal derivatives with anticancer properties is an active area of drug discovery. Here we measured the relative affinities of d-seco modified steroidal derivatives for estrogen receptor α, estrogen receptor ß or androgen receptor ligand binding domains using an optimized non-transcriptional fluorescent cell assay in yeast. Ligand binding domains of steroid receptors were expressed in-frame with yellow fluorescent protein in the yeast Saccharomyces cerevisiae. Addition of known steroid ligands to yeast expressing the appropriate cognate receptor results in increased fluorescence intensity, enabling estimation of receptor binding affinities in a dose-response and time-dependent manner. Relative binding affinities of d-seco modified steroidal derivatives 1-4 were then evaluated using this yeast system by live cell fluorimetry and fluorescence microscopy, coupled with in vitro cytotoxicity and in silico molecular docking studies. d-Seco estratriene derivative 2displayed strong affinity for both estrogen receptor α and ß ligand binding domains and negligible affinity for the androgen receptor ligand binding domain. Compound 2 also showed moderate cytotoxicity against estrogen receptor positive MCF-7 breast adenocarcinoma cells. In addition to identification of new ligands for steroid receptors, this assay could also be used to filter out compounds with potential for off-target interactions with steroid receptors during the early stages of compound screening.


Subject(s)
Breast Neoplasms/metabolism , Estrogen Receptor alpha/metabolism , Estrogen Receptor beta/metabolism , Receptors, Steroid/metabolism , Saccharomyces cerevisiae/metabolism , Biosensing Techniques , Female , Humans , MCF-7 Cells , Microscopy, Fluorescence , Molecular Structure , Steroids/metabolism
12.
Bioorg Med Chem ; 23(4): 703-11, 2015 Feb 15.
Article in English | MEDLINE | ID: mdl-25619894

ABSTRACT

We report the synthesis of steroidal 16,17-seco-16,17a-dinitriles and investigate their antitumor cell properties. Compounds were evaluated for anticancer potential by in vitro antiproliferation studies, molecular docking and virtual screening. Several compounds inhibit the growth of breast and prostate cancer cell lines (MCF-7, MDA-MB-231 and PC3), and/or cervical cancer cells (HeLa). Supporting this, molecular docking predicts that steroidal 16,17-seco-16,17a-dinitriles could bind with high affinity to multiple molecular targets of breast and prostate cancer treatment (aromatase, estrogen receptor α, androgen receptor and 17α-hydroxylase) facilitated by D-seco flexibility and nitrile-mediated contacts. Thus, 16,17-seco-16,17a-dinitriles may be useful for the design of inhibitors of multiple steroidogenesis pathways. Strikingly, 10, a 1,4-dien-3-on derivative, displayed selective submicromolar antiproliferative activity against hormone-dependent (MCF-7) and -independent (MDA-MB-231) breast cancer cells (IC50 0.52, 0.11µM, respectively). Ligand-based 3D similarity searches suggest AKR1C, 17ß-HSD and/or 3ß-HSD subfamilies as responsible for this antiproliferative activity, while fast molecular docking identified AKR1C and ERß as potential binders-both targets in the treatment of hormone-independent breast cancers.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Nitriles/chemistry , Nitriles/pharmacology , Steroids/chemistry , Steroids/pharmacology , Antineoplastic Agents/chemical synthesis , Aromatase/metabolism , Breast/drug effects , Breast/metabolism , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Crystallography, X-Ray , Estrogen Receptor alpha/metabolism , Female , HeLa Cells , Humans , Male , Molecular Docking Simulation , Nitriles/chemical synthesis , Prostate/drug effects , Prostate/metabolism , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , Steroids/chemical synthesis
13.
FASEB J ; 28(5): 2332-46, 2014 May.
Article in English | MEDLINE | ID: mdl-24558196

ABSTRACT

Polycystin 2 (PC2) is a calcium-dependent calcium channel, and mutations to human PC2 (hPC2) are associated with polycystic kidney disease. The C-terminal tail of hPC2 contains 2 EF hand motifs, but only the second binds calcium. Here, we investigate whether these EF hand motifs serve as a calcium sensor responsible for the calcium dependence of PC2 function. Using NMR and bioinformatics, we show that the overall fold is highly conserved, but in evolutionarily earlier species, both EF hands bind calcium. To test whether the EF hand motif is truly a calcium sensor controlling PC2 channel function, we altered the number of calcium binding sites in hPC2. NMR studies confirmed that modified hPC2 binds an additional calcium ion. Single-channel recordings demonstrated a leftward shift in the calcium dependence, and imaging studies in cells showed that calcium transients were enhanced compared with wild-type hPC2. However, biophysics and functional studies showed that the first EF hand can only bind calcium and be functionally active if the second (native) calcium-binding EF hand is intact. These results suggest that the number and location of calcium-binding sites in the EF hand senses the concentration of calcium required for PC2 channel activity and cellular function.


Subject(s)
EF Hand Motifs , TRPP Cation Channels/metabolism , Amino Acid Motifs , Amino Acid Sequence , Animals , Binding Sites , Calcium/metabolism , Calcium Channels/metabolism , Cell Line , Computational Biology , Humans , Kidney/metabolism , Lipid Bilayers/metabolism , Magnetic Resonance Spectroscopy , Molecular Sequence Data , Phylogeny , Plasmids/metabolism , Protein Binding , Sea Urchins , Sequence Homology, Amino Acid , Signal Transduction , Swine
14.
Bioorg Med Chem ; 21(23): 7257-66, 2013 Dec 01.
Article in English | MEDLINE | ID: mdl-24148837

ABSTRACT

We report a rapid and efficient synthesis of A-ring modified 17α-picolyl and 17(E)-picolinylidene androstane derivatives from dehydroepiandrosterone. Compounds were validated spectroscopically and structurally characterized by X-ray crystallography. Virtual screening by molecular docking against clinical targets of steroidal anticancer drugs (ERα, AR, Aromatase and CYP17A1) suggests that 17(E)-picolinylidene, but not 17α-picolyl androstanes could specifically interact with CYP17A1 (17α-hydroxylase) with similar geometry and affinity as Abiraterone, a 17-pyridinyl androstane drug clinically used in the treatment of prostate cancer. In addition, several 17(E)-picolinylidene androstanes demonstrated selective antiproliferative activity against PC3 prostate cancer cells, which correlates with Abiraterone antiproliferative activity and predicted CYP17A1 binding affinities. Based on these preliminary results, 17(E)-picolinylidene androstane derivatives could be a promising starting point for the development of new compounds for the treatment of prostate cancer.


Subject(s)
Androstanes/chemistry , Androstanes/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Proliferation/drug effects , Prostatic Neoplasms/drug therapy , Cell Line, Tumor , Crystallography, X-Ray , Humans , Male , Molecular Docking Simulation , Prostate/drug effects , Prostate/enzymology , Prostate/pathology , Prostatic Neoplasms/enzymology , Prostatic Neoplasms/pathology , Protein Binding , Steroid 17-alpha-Hydroxylase/chemistry , Steroid 17-alpha-Hydroxylase/metabolism
15.
J Biol Chem ; 287(21): 17232-17240, 2012 May 18.
Article in English | MEDLINE | ID: mdl-22474326

ABSTRACT

Polycystin-2 (PC2) is a Ca(2+)-permeable transient receptor potential channel activated and regulated by changes in cytoplasmic Ca(2+). PC2 mutations are responsible for ∼15% of autosomal dominant polycystic kidney disease. Although the C-terminal cytoplasmic tail of PC2 has been shown to contain a Ca(2+)-binding EF-hand domain, the molecular basis of PC2 channel gating by Ca(2+) remains unknown. We propose that the PC2 EF-hand is a Ca(2+) sensor required for channel gating. Consistent with this, Ca(2+) binding causes a dramatic decrease in the radius of gyration (R(g)) of the PC2 EF-hand by small angle x-ray scattering and significant conformational changes by NMR. Furthermore, increasing Ca(2+) concentrations cause the C-terminal cytoplasmic tail to transition from a mixture of extended oligomers to a single compact dimer by analytical ultracentrifugation, coupled with a >30 Šdecrease in maximum interatomic distance (D(max)) by small angle x-ray scattering. Mutant PC2 channels unable to bind Ca(2+) via the EF-hand are inactive in single-channel planar lipid bilayers and inhibit Ca(2+) release from ER stores upon overexpression in cells, suggesting dominant negative properties. Our results support a model where PC2 channels are gated by discrete conformational changes in the C-terminal cytoplasmic tail in response to changes in cytoplasmic Ca(2+) levels. These properties of PC2 are lost in autosomal dominant polycystic kidney disease, emphasizing the importance of PC2 to kidney cell function. We speculate that PC2 and the Ca(2+)-dependent transient receptor potential channels in general are regulated by similar conformational changes in their cytoplasmic domains that are propagated to the channel pore.


Subject(s)
Calcium/chemistry , Calcium/metabolism , Ion Channel Gating/physiology , Models, Biological , Models, Molecular , TRPP Cation Channels/chemistry , TRPP Cation Channels/metabolism , Cell Line , Crystallography, X-Ray , Humans , Protein Structure, Tertiary , TRPP Cation Channels/genetics
16.
J Mol Biol ; 418(5): 367-78, 2012 May 18.
Article in English | MEDLINE | ID: mdl-22387470

ABSTRACT

We have developed a procedure in which disulfide cross-links are used to identify regions of proteins that undergo functionally important intramolecular motion. The approach was applied to the identification of disulfide bonds that stabilize the active state of the yeast α-mating pheromone receptor Ste2p, a member of the superfamily of G protein-coupled receptors. Cysteine residues were introduced at random positions in targeted regions of a starting allele of Ste2p that completely lacks cysteines. Libraries of mutated receptors were then screened for alleles that exhibit constitutive signaling. Two strongly activated alleles were recovered containing cysteine residues in transmembrane (TM) segments 5 and 6. Constitutive activity of these alleles was dependent on the presence of both introduced cysteines and was sensitive to reducing agent. Cross-linked peptides derived from the mutant receptors were detected by immunoblotting. Additional sites of cross-linking between TM segments 5 and 6 that did not lead to constitutive activation were also identified. These results indicate that relative motion of the TM segments 5 and 6 in the extracellular half of the membrane is sufficient to activate the receptor and that TM segment 6, but not TM segment 5, exhibits rotational mobility that is not associated with receptor activation.


Subject(s)
Receptors, Mating Factor/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae/metabolism , Cysteine/chemistry , Cysteine/genetics , Cysteine/metabolism , Mutagenesis, Site-Directed , Protein Conformation , Receptors, Mating Factor/genetics , Receptors, Mating Factor/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
17.
J Biol Chem ; 286(52): 44888-96, 2011 Dec 30.
Article in English | MEDLINE | ID: mdl-22016391

ABSTRACT

The versatility of intracellular calcium as a second messenger is seen in its ability to mediate opposing events such as neuronal cell growth and apoptosis. A leading hypothesis used to explain how calcium regulates such divergent signaling pathways is that molecules responsible for maintaining calcium homeostasis have multiple roles. For example, chromogranin B (CGB), a calcium binding protein found in secretory granules and in the lumen of the endoplasmic reticulum, buffers calcium and also binds to and amplifies the activity of the inositol 1,4,5-trisphosphate receptor (InsP(3)R). Previous studies have identified two conserved domains of CGB, an N-terminal domain (N-CGB) and a C-terminal domain (C-CGB). N-CGB binds to the third intraluminal loop of the InsP(3)R and inhibits binding of full-length CGB. This displacement of CGB decreases InsP(3)R-dependent calcium release and alters normal signaling patterns. In the present study, we further characterized the role of N-CGB and identified roles for C-CGB. The effect of N-CGB on calcium release depended upon endogenous levels of cellular CGB, whereas the regulatory effect of C-CGB was apparent regardless of endogenous levels of CGB. When either full-length CGB or C-CGB was expressed in cells, calcium transients were increased. Additionally, the calcium signal initiation site was altered upon C-CGB expression in neuronally differentiated PC12 and SHSY5Y cells. These results show that CGB has numerous regulatory roles and that CGB is a critical component in modulating InsP(3)R-dependent calcium signaling.


Subject(s)
Calcium Signaling/physiology , Calcium/metabolism , Chromogranin B/metabolism , Endoplasmic Reticulum/metabolism , Animals , Chromogranin B/genetics , Endoplasmic Reticulum/genetics , Inositol 1,4,5-Trisphosphate Receptors/genetics , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Mice , NIH 3T3 Cells , PC12 Cells , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary , Rats
18.
Proc Natl Acad Sci U S A ; 107(20): 9176-81, 2010 May 18.
Article in English | MEDLINE | ID: mdl-20439752

ABSTRACT

The C-terminal cytoplasmic tail of polycystin-2 (PC2/TRPP2), a Ca(2+)-permeable channel, is frequently mutated or truncated in autosomal dominant polycystic kidney disease. We have previously shown that this tail consists of three functional regions: an EF-hand domain (PC2-EF, 720-797), a flexible linker (798-827), and an oligomeric coiled coil domain (828-895). We found that PC2-EF binds Ca(2+) at a single site and undergoes Ca(2+)-dependent conformational changes, suggesting it is an essential element of Ca(2+)-sensitive regulation of PC2 activity. Here we describe the NMR structure and dynamics of Ca(2+)-bound PC2-EF. Human PC2-EF contains a divergent non-Ca(2+)-binding helix-loop-helix (HLH) motif packed against a canonical Ca(2+)-binding EF-hand motif. This HLH motif may have evolved from a canonical EF-hand found in invertebrate PC2 homologs. Temperature-dependent steady-state NOE experiments and NMR R(1) and R(2) relaxation rates correlate with increased molecular motion in the EF-hand, possibly due to exchange between apo and Ca(2+)-bound states, consistent with a role for PC2-EF as a Ca(2+)-sensitive regulator. Structure-based sequence conservation analysis reveals a conserved hydrophobic surface in the same region, which may mediate Ca(2+)-dependent protein interactions. We propose that Ca(2+)-sensing by PC2-EF is responsible for the cooperative nature of PC2 channel activation and inhibition. Based on our results, we present a mechanism of regulation of the Ca(2+) dependence of PC2 channel activity by PC2-EF.


Subject(s)
Calcium/metabolism , EF Hand Motifs/genetics , Models, Molecular , Polycystic Kidney Diseases/genetics , Protein Conformation , TRPP Cation Channels/chemistry , TRPP Cation Channels/metabolism , Amino Acid Sequence , Conserved Sequence/genetics , Humans , Molecular Sequence Data , Nuclear Magnetic Resonance, Biomolecular , Polycystic Kidney Diseases/metabolism , Sequence Homology
19.
Am J Physiol Renal Physiol ; 297(5): F1310-5, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19726544

ABSTRACT

Autosomal dominant polycystic kidney disease (ADPKD) arises following mutations of either Pkd1 or Pkd2. The proteins these genes encode, polycystin-1 (PC1) and polycystin-2 (PC2), form a signaling complex using direct intermolecular interactions. Two distinct domains in the C-terminal tail of PC2 have recently been identified, an EF-hand and a coiled-coil domain. Here, we show that the PC2 coiled-coil domain interacts with the C-terminal tail of PC1, but that the PC2 EF-hand domain does not. We measured the K0.5 of the interaction between the C-terminal tails of PC1 and PC2 and showed that the direct interaction of these proteins is abrogated by a PC1 point mutation that was identified in ADPKD patients. Finally, we showed that overexpression of the PC1 C-terminal tail in MDCK cells alters the Ca2+ response, but that overexpression of the PC1 C-terminal tail containing the disease mutation does not. These results allow a more detailed understanding of the mechanism of pathogenic mutations in the cytoplasmic regions of PC1 and PC2.


Subject(s)
Cytoplasm/physiology , TRPP Cation Channels/physiology , Animals , Calcium Signaling/physiology , Cell Line , Dogs , Epithelial Cells/metabolism , Humans , Mice , Polycystic Kidney, Autosomal Dominant/genetics , Protein Conformation , Surface Plasmon Resonance , TRPP Cation Channels/genetics , Transfection
20.
Cell Calcium ; 46(4): 257-62, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19732951

ABSTRACT

Neuronal calcium sensor-1 (NCS-1) is a high-affinity, low-capacity Ca(2+)-binding protein expressed in many cell types. We previously showed that NCS-1 interacts with inositol 1,4,5-trisphosphate receptor (InsP(3)R) and modulates Ca(2+)-signaling by enhancing InsP3-dependent InsP(3)R channel activity and intracellular Ca(2+) transients. Recently we reported that the chemotherapeutic agent, paclitaxel (taxol) triggers mu-calpain dependent proteolysis of NCS-1, leading to reduced Ca(2+)-signaling within the cell. Degradation of NCS-1 may be critical in the induction of peripheral neuropathy associated with taxol treatment for breast and ovarian cancer. To begin to design strategies to protect NCS-1, we treated NCS-1 with mu-calpain in vitro and identified the cleavage site by N-terminal sequencing and MALDI mass spectroscopy. mu-Calpain cleavage of NCS-1 occurs within an N-terminal pseudoEF-hand domain, which by sequence analysis appears to be unable to bind Ca(2+). Our results suggest a role for this pseudoEF-hand in stabilizing the three functional EF-hands within NCS-1. Using isothermal titration calorimetry (ITC) we found that loss of the pseudoEF-hand markedly decreased NCS-1's affinity for Ca(2+). Physiologically, this significant decrease in Ca(2+) affinity may render NCS-1 incapable of responding to changes in Ca(2+) levels in vivo. The reduced ability of mu-calpain treated NCS-1 to bind Ca(2+) may explain the altered Ca(2+) signaling in the presence of taxol and suggests a strategy for therapeutic intervention of peripheral neuropathy in cancer patients undergoing taxol treatment.


Subject(s)
Calcium/chemistry , Calpain/chemistry , Neuronal Calcium-Sensor Proteins/chemistry , Neuropeptides/chemistry , Recombinant Proteins/chemistry , Animals , Calcium/metabolism , Calcium Signaling , Calcium-Binding Proteins/metabolism , Calpain/metabolism , Cells, Cultured , Chromatography , Humans , Hydrolysis , Hydrophobic and Hydrophilic Interactions , Neuronal Calcium-Sensor Proteins/genetics , Neuronal Calcium-Sensor Proteins/metabolism , Neurons/metabolism , Neuropeptides/genetics , Neuropeptides/metabolism , Protein Binding , Rats , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
SELECTION OF CITATIONS
SEARCH DETAIL
...