Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE/ACM Trans Comput Biol Bioinform ; 17(4): 1241-1252, 2020.
Article in English | MEDLINE | ID: mdl-30530337

ABSTRACT

Recent advances in DNA methylation profiling have paved the way for understanding the underlying epigenetic mechanisms of various diseases such as cancer. While conventional distance-based clustering algorithms (e.g., hierarchical and k-means clustering) have been heavily used in such profiling owing to their speed in conduct of high-throughput analysis, these methods commonly converge to suboptimal solutions and/or trivial clusters due to their greedy search nature. Hence, methodologies are needed to improve the quality of clusters formed by these algorithms without sacrificing from their speed. In this study, we introduce three related algorithms for a complete high-throughput methylation analysis: a variance-based dimension reduction algorithm to handle high-dimensionality in data, an outlier detection algorithm to identify the outliers of data, and an advanced Tabu-based iterative k-medoids clustering algorithm (T-CLUST) to reduce the impact of initial solutions on the performance of conventional k-medoids algorithm. The performance of the proposed algorithms is demonstrated on nine different real DNA methylation datasets obtained from the Gene Expression Omnibus DataSets database. The accuracy of the cluster identification obtained by our proposed algorithms is higher than those of hierarchical and k-means clustering, as well as the conventional methods. The algorithms are implemented in MATLAB, and available at: http://www.coe.miami.edu/simlab/tclust.html.


Subject(s)
Algorithms , Cluster Analysis , DNA Methylation/genetics , Epigenomics/methods , Genetic Markers/genetics , Cell Line, Tumor , Databases, Genetic , Humans , Neoplasms , Transcriptome/genetics
2.
Waste Manag Res ; 33(10): 894-907, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26219294

ABSTRACT

Safety risks embedded within solid waste management systems continue to be a significant issue and are prevalent at every step in the solid waste management process. To recognise and address these occupational hazards, it is necessary to discover the potential safety concerns that cause them, as well as their direct and/or indirect impacts on the different types of solid waste workers. In this research, our goal is to statistically assess occupational safety risks to solid waste workers in the state of Florida. Here, we first review the related standard industrial codes to major solid waste management methods including recycling, incineration, landfilling, and composting. Then, a quantitative assessment of major risks is conducted based on the data collected using a Bayesian data analysis and predictive methods. The risks estimated in this study for the period of 2005-2012 are then compared with historical statistics (1993-1997) from previous assessment studies. The results have shown that the injury rates among refuse collectors in both musculoskeletal and dermal injuries have decreased from 88 and 15 to 16 and three injuries per 1000 workers, respectively. However, a contrasting trend is observed for the injury rates among recycling workers, for whom musculoskeletal and dermal injuries have increased from 13 and four injuries to 14 and six injuries per 1000 workers, respectively. Lastly, a linear regression model has been proposed to identify major elements of the high number of musculoskeletal and dermal injuries.


Subject(s)
Refuse Disposal , Safety , Bayes Theorem , Florida , Incineration , Models, Theoretical , Recycling , Risk Assessment , Safety/statistics & numerical data , Solid Waste/analysis , Waste Disposal Facilities
SELECTION OF CITATIONS
SEARCH DETAIL
...