Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 13(5)2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38475417

ABSTRACT

Breast cancer (BC) is one of the most common cancers among women. Effective treatment requires precise tailoring to the genetic makeup of the cancer for improved efficacy. Numerous research studies have concentrated on natural compounds and their anti-breast cancer properties to improve the existing treatment options. Chromolaena tacotana (Klatt) R.M. King and H. Rob (Ch. tacotana) is a notable source of bioactive hydroxy-methylated flavonoids. However, the specific anti-BC mechanisms of these flavonoids, particularly those present in the plant's inflorescences, remain partly undefined. This study focuses on assessing a chalcone derivative extracted from Ch. tacotana inflorescences for its potential to concurrently activate regulated autophagy and intrinsic apoptosis in luminal A and triple-negative BC cells. We determined the chemical composition of the chalcone using ultraviolet (UV) and nuclear magnetic resonance (NMR) spectroscopy. Its selective cytotoxicity against BC cell lines was assessed using the MTT assay. Flow cytometry and Western blot analysis were employed to examine the modulation of proteins governing autophagy and the intrinsic apoptosis pathway. Additionally, in silico simulations were conducted to predict interactions between chalcone and various anti-apoptotic proteins, including the mTOR protein. Chalcone was identified as 2',4-dihydroxy-4',6'-dimethoxy-chalcone (DDC). This compound demonstrated a selective inhibition of BC cell proliferation and triggered autophagy and intrinsic apoptosis. It induced cell cycle arrest in the G0/G1 phase and altered mitochondrial outer membrane potential (∆ψm). The study detected the activation of autophagic LC3-II and mitochondrial pro-apoptotic proteins in both BC cell lines. The regulation of Bcl-XL and Bcl-2 proteins varied according to the BC subtype, yet they showed promising molecular interactions with DDC. Among the examined pro-survival proteins, mTOR and Mcl-1 exhibited the most favorable binding energies and were downregulated in BC cell lines. Further research is needed to fully understand the molecular dynamics involved in the activation and interaction of autophagy and apoptosis pathways in cancer cells in response to potential anticancer agents, like the hydroxy-methylated flavonoids from Ch. tacotana.

2.
Int J Mol Sci ; 24(20)2023 Oct 14.
Article in English | MEDLINE | ID: mdl-37894866

ABSTRACT

Chromolaena tacotana (Klatt) R. M. King and H. Rob (Ch. tacotana) contains bioactive flavonoids that may have antioxidant and/or anti-cancer properties. This study investigated the potential anti-cancer properties of a newly identified chalcone isolated from the inflorescences of the plant Chromolaena tacotana (Klatt) R. M. King and H. Rob (Ch. tacotana). The chalcone structure was determined using HPLC/MS (QTOF), UV, and NMR spectroscopy. The compound cytotoxicity and selectivity were evaluated on prostate, cervical, and breast cancer cell lines using the MTT assay. Apoptosis and autophagy induction were assessed through flow cytometry by detecting annexin V/7-AAD, active Casp3/7, and LC3B proteins. These results were supported by Western blot analysis. Mitochondrial effects on membrane potential, as well as levels of pro- and anti-apoptotic proteins were analyzed using flow cytometry, fluorescent microscopy, and Western blot analysis specifically on a triple-negative breast cancer (TNBC) cell line. Furthermore, molecular docking (MD) and molecular dynamics (MD) simulations were performed to evaluate the interaction between the compounds and pro-survival proteins. The compound identified as 2',3,4-trihydroxy-4',6'-dimethoxy chalcone inhibited the cancer cell line proliferation and induced apoptosis and autophagy. MDA-MB-231, a TNBC cell line, exhibited the highest sensitivity to the compound with good selectivity. This activity was associated with the regulation of mitochondrial membrane potential, activation of the pro-apoptotic proteins, and reduction of anti-apoptotic proteins, thereby triggering the intrinsic apoptotic pathway. The chalcone consistently interacted with anti-apoptotic proteins, particularly the Bcl-2 protein, throughout the simulation period. However, there was a noticeable conformational shift observed with the negative autophagy regulator mTOR protein. Future studies should focus on the molecular mechanisms underlying the anti-cancer potential of the new chalcone and other flavonoids from Ch. tacotana, particularly against predominant cancer cell types.


Subject(s)
Chalcone , Chalcones , Chromolaena , Triple Negative Breast Neoplasms , Humans , Chalcone/pharmacology , Chalcones/pharmacology , Cell Line, Tumor , Molecular Docking Simulation , Triple Negative Breast Neoplasms/metabolism , Cell Proliferation , Apoptosis
3.
J Environ Public Health ; 2022: 4968739, 2022.
Article in English | MEDLINE | ID: mdl-35726323

ABSTRACT

Aim: Heavy metal concentration [mg/dL, MP] in soil and the transfer to vegetable organs may have a sampling effect. We compared the [MP] in soil and organ samples of Beta vulgaris collected in sites with socioeconomic differences potentially inducing phytotoxicity. Materials and Methods: Samples of Beta vulgaris and soils (n = 4 per sample of soil and plant material) were randomly collected from two distant geographic areas (Mosquera and Sibaté, Cundinamarca, Colombia). We determined the [MP] using acid digestion of HCl : HNO3 [1 : 1]; the [MP] was obtained by atomic absorption in Varian AA-140 and Shimadzu AA-7000 equipment. A two-way ANOVA estimated the effect (partial η2) of the sampling site and metal type on the [MP] and transfer to the vegetable. Results: In Sibaté, the means (SD) of As_1.44 (0.18), Co_1.09 (0.51), Cr_6.21 (0.33), Ni_0.22 (0.02), and Pb_4.17 (0.87) were higher than in Mosquera (As_1.06 (0.21), Co_0.81 (0.19), Cr_3.72 (0.51), Ni_0.13 (0.04), and Pb_1.69 (0.40)) (p value <0.05). The effect of the interaction between the metal type and Beta vulgaris organs on the [MP] (0.801) in Sibaté was more meaningful than in Mosquera (0.430). Additionally, there was a strong correlation (Spearman's ρ > 0.8, p value <0.001) between [MP_soil] and [MP_plants] and between the transfer of metals to the plant and to the leaves. Discussion. The sampling location has a differential effect on the [MP] in soil and the transfer to Beta vulgaris. Given the differential effect described, the monitoring and phytoremediation strategies must be adjusted to scenarios with potentially phytotoxic conditions.


Subject(s)
Beta vulgaris , Metals, Heavy , Soil Pollutants , Environmental Monitoring , Lead , Metals, Heavy/analysis , Soil , Soil Pollutants/analysis , Vegetables
4.
Foods ; 11(20)2022 Oct 14.
Article in English | MEDLINE | ID: mdl-37430950

ABSTRACT

Raw milk adulteration with cheese whey is a major problem that affects the dairy industry. The objective of this work was to evaluate the adulteration of raw milk with the cheese whey obtained from the coagulation process, with chymosin enzyme using casein glycomacropeptide (cGMP) as an HPLC marker. Milk proteins were precipitated with 24% TCA; with the supernatant obtained, a calibration curve was established by mixing raw milk and whey in different percentages, which were passed through a KW-802.5 Shodex molecular exclusion column. A reference signal, with a retention time of 10.8 min, was obtained for each of the different percentages of cheese whey; the higher the concentration, the higher the peak. Data analysis was adjusted to a linear regression model, with an R2 of 0.9984 and equation to predict dependent variable (cheese whey percentage in milk) values. The chromatography sample was collected and analyzed by three tests: a cGMP standard HPLC analysis, MALDI-TOF spectrometry, and immunochromatography assay. The results of these three tests confirmed the presence of the cGMP monomer in adulterated samples with whey, which was obtained from chymosin enzymatic coagulation. As a contribution to food safety, the molecular exclusion chromatography technique presented is reliable, easy to implement in a laboratory, and inexpensive, compared with other methodologies, such as electrophoresis, immunochromatography, and HPLC-MS, thus allowing for the routine quality control of milk, an important product in human nutrition.

5.
Heliyon ; 6(7): e04212, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32642577

ABSTRACT

Heavy metal contamination in water resources, soil, and food sources is an issue that compromises food safety in Sibaté, Colombia. In the present study concentration of heavy metals [HMs], such as Cu, As, Pb, Cr, Zn, Co, Cd and Ni, present in vegetables included in the typical Colombian diet were measured. The study was conducted as follows: samples of parsley, artichoke and carrots produced in a location near the Muña dam were collected, where the Bogotá River water is treated for use as a water resource. To determine food safety, national and international [HMs] established limits were compared with quantified [HMs] in samples of different vegetable parts and of the surrounding soil. Fresh samples were separated in their respective parts for cold acid digestion with HCl and HNO3 (1:1) for 15 days. Heavy metal mean ± standard error (SE) were as follows (mg/kg) As 2.36 ± 0.185, Cd 0.16 ± 0.009, Co 0.43 ± 0.019, Cr 12.1 ± 0.453, Cu 13.1 ± 1.68, Ni 0.00, Pb 7.07 ± 0.482 and Zn 3.976 ± 0.332. Cd, Cr, As, Co and Ni showed high transfer factor in Cynara scolymus. Moreover, high Pb, Cu and Zn transfer factor were present in Petroselinum crispum. Except for Daucus carota roots, there was a high metal transfer specifically in Petroselinum crispum leaves and other different plant parts, with high transfer factor for Cr, As, Co, Pb, Cu and Zn.

SELECTION OF CITATIONS
SEARCH DETAIL
...