Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Ecotoxicol Environ Saf ; 246: 114179, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36244170

ABSTRACT

Foliar Cu concentration has been widely used as a biomarker of plant growth in phytotoxicity bioassays. This relation has helped find plant processes altered by Cu in dose-response experiments (a bivariate approach). However, when plants are grown in field conditions, their responses can vary in function of multiple variables, such as the environment, plant physiology, and other elements in plant (plant ionome). These sources of variability are commonly unreported, which could limit bioassays' utility. Thus, the present study aimed to assess and integrate the mentioned sources of variability on Cu phytotoxicity. Lettuce was used as plant model. Lettuces were grown in growth chambers with contrasting light and air humidity conditions and on two different field-contaminated soils (sandy and loamy soils). Results showed that environmental conditions significantly affected foliar Cu and plant growth, but this effect differed in the two studied soils. Foliar Cu was not a good biomarker of plant growth. In contrast, integrating the potential phytotoxicity effect with the plant's nutritional status allowed a better understanding of plant growth. We remarked on using a structural equation modeling approach (SEM) to integrate plant physiology and plant ionome as moderators of plant growth. Results showed that plant growth was primarily related to plant nutritional status rather than Cu phytotoxicity. Also, the foliar Cu concentration would affect plant nutritional status due to photosynthesis-related plant processes and cation balance. Finally, this research invites to state and include sources of variability when assessing phytotoxicity. This way, it is possible to advance toward understanding complex linked processes occurring in field conditions.


Subject(s)
Soil Pollutants , Soil Pollutants/analysis , Copper/toxicity , Copper/analysis , Environmental Pollution , Soil/chemistry , Lactuca , Plants , Photosynthesis , Plant Roots/chemistry
2.
Science ; 378(6616): 147, 2022 10 14.
Article in English | MEDLINE | ID: mdl-36227974

Subject(s)
Trees , Chile , Cities , Urban Population
3.
Plants (Basel) ; 11(6)2022 Mar 11.
Article in English | MEDLINE | ID: mdl-35336626

ABSTRACT

Wild Edible Plants (WEPs) still play a vital role in the subsistence of many traditional communities, while they are receiving increasing recognition in tackling food security and nutrition at the international level. This paper reviews the use patterns of native WEPs in Chile and discusses their role as future crops and sources of food products. We conducted an extensive literature review by assessing their taxonomic diversity, life forms, consumption and preparation methods, types of use (traditional and modern), and nutritional properties. We found that 330 native species were documented as food plants, which represent 7.8% of the total flora of Chile. These species belong to 196 genera and 84 families. The most diverse families are Asteraceae (34), Cactaceae (21), Fabaceae (21), Solanaceae (20) and Apiaceae (19), and the richest genera in terms of number of species are Solanum (9), Ribes (8), Berberis (7), Hypochaeris (7) and Oxalis (6). Perennial herbs are the predominant life form (40%), followed by shrubs (35%), trees (14%), and annual and biannual herbs (11%). Fruits (35.8%), roots (21.5%) and leaves (20.0%) are the parts of plants consumed the most. Nine different food preparation categories were identified, with 'raw' forming the largest group (43%), followed by 'beverages' (27%), 'savoury preparations' (27%), and 'sweet' (13%). Almost all native Chilean WEPs have reported traditional food uses, while only a few of them have contemporary uses, with food products mainly sold in local and specialised markets. Species' richness, taxonomic diversity and family representation have similar patterns to those observed for the world flora and other countries where surveys have been carried out. Some Chilean native WEPs have the potential to become new crops and important sources of nutritious and healthy products in the food industry. However, there are still many gaps in knowledge about their nutritional, anti-nutritional and biochemical characteristics; future research is recommended to unveil their properties and potential uses in agriculture and the food industry.

4.
J Appl Entomol ; 145(5): 369-383, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34937993

ABSTRACT

Insect pollination increases the yield and quality of many crops and therefore, understanding the role of insect pollinators in crop production is necessary to sustainably increase yields. Avocado Persea americana benefits from insect pollination, however, a better understanding of the role of pollinators and their contribution to the production of this globally important crop is needed. In this study, we carried out a systematic literature review and meta-analysis of studies investigating the pollination ecology of avocado to answer the following questions: (a) Are there any research gaps in terms of geographic location or scientific focus? (b) What is the effect of insect pollinators on avocado pollination and production? (c) Which pollinators are the most abundant and effective and how does this vary across location? (d) How can insect pollination be improved for higher yields? (e) What are the current evidence gaps and what should be the focus of future research? Research from many regions of the globe has been published, however, results showed that there is limited information from key avocado producing countries such as Mexico and the Dominican Republic. In most studies, insects were shown to contribute greatly to pollination, fruit set and yield. Honeybees Apis mellifera were important pollinators in many regions due to their efficiency and high abundance, however, many wild pollinators also visited avocado flowers and were the most frequent visitors in over 50% of studies. This study also highlighted the effectiveness of stingless bees (Meliponini) and blow flies (Calliphoridae) as avocado pollinators although, for the majority of flower visitors, there is a lack of data on pollinator efficiency. For optimal yields, growers should ensure a sufficient abundance of pollinators in their orchards either through increasing honeybee hive density or, for a more sustainable approach, by managing wild pollinators through practices that protect or promote natural habitat.

5.
Biol Lett ; 17(9): 20210360, 2021 09.
Article in English | MEDLINE | ID: mdl-34582735

ABSTRACT

Although birds have traditionally been considered anosmic, increasing evidence indicates that olfaction plays an important role in the foraging behaviours of insectivorous birds. Recent studies have shown that birds can exploit herbivore-induced plant volatiles and sexual pheromones of adult insects to locate their prey. Many insectivorous birds prey on immature insects, providing relevant ecosystem services as pest regulators in natural and agricultural ecosystems. We asked whether birds could rely on chemical cues emitted by the immature stages of insects to prey on them. To address this question, we performed field experiments to evaluate if insectivorous birds can detect the aggregation pheromone produced by the larvae of the carpenter worm, Chilecomadia valdiviana. Groups of five artificial larvae were placed in branches of 72 adult trees in a remnant fragment of a sclerophyllous forest in central Chile. Each grouping of larvae contained a rubber septum loaded with either larval pheromone as treatment or solvent alone as control. We found that the number of larvae damaged by bird pecks was significantly higher in groups with dispensers containing the larval extract than in control groups. Our results show that birds can rely on immature insect-derived chemical cues used for larvae aggregation to prey on them.


Subject(s)
Ecosystem , Pheromones , Animals , Birds , Cues , Larva
6.
Mol Phylogenet Evol ; 163: 107234, 2021 10.
Article in English | MEDLINE | ID: mdl-34146676

ABSTRACT

The current distribution of the flora and fauna of southern South America is the result of drastic geological events that occurred during the last 20 million years, including marine transgressions, glaciations and active vulcanism. All these have been associated with fragmentation, isolation and subsequent expansion of the biota, south of 35°S, such as the temperate rainforest. This forest is mostly dominated by Nothofagus trees and is the habitat of the relict marsupial monito del monte, genus Dromiciops, sole survivor of the order Microbiotheria. Preliminary analyses using mtDNA proposed the existence of three main Dromiciops lineages, distributed latitudinally, whose divergence was initially attributed to recent Pleistocene glaciations. Using fossil-calibrated dating on nuclear and mitochondrial genes, here we reevaluate this hypothesis and report an older (Miocene) biogeographic history for the genus. We performed phylogenetic reconstructions using sequences from two mitochondrial DNA and four nuclear DNA genes in 159 specimens from 31 sites across Chile and Argentina. Our phylogenetic analysis resolved three main clades with discrete geographic distributions. The oldest and most differentiated clade corresponds to that of the northern distribution (35.2°S to 39.3°S), which should be considered a distinct species (D. bozinovici, sensu D'Elía et al. 2016). According to our estimations, this species shared a common ancestor with D. gliroides (southern clades) about ~13 million years ago. Divergence time estimates for the southern clades (39.6°S to 42.0°S) ranged from 9.57 to 6.5 Mya. A strong genetic structure was also detected within and between clades. Demographic analyses suggest population size stability for the northern clade (D. bozinovici), and recent demographic expansions for the central and southern clades. All together, our results suggest that the diversification of Dromiciops were initiated by the Middle Miocene transgression (MMT), the massive marine flooding that covered several lowlands of the western face of Los Andes between 37 and 48°S. The MMT resulted from an increase in global sea levels at the Miocene climatic optimum, which shaped the biogeographic origin of several species, including Nothofagus forests, the habitat of Dromiciops.


Subject(s)
Marsupialia , Animals , Chile , DNA, Mitochondrial/genetics , Ecosystem , Phylogeny , Phylogeography
7.
Chemosphere ; 242: 125176, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31671299

ABSTRACT

Several studies have attempted to predict the so-called "phytoavailable" fraction by correlating plant responses with different soil metal pools. Most of the data derived from these studies tend to be inconsistent, making interpretations difficult. Thus, the main objective of this study was to determine which soil Cu pool (free Cu2+, salt-exchangeable Cu or total Cu) controls Cu phytotoxicity in soils near a Cu smelter in central Chile. We studied the following traits of the local plant community grown spontaneously on the study site: species richness, shoot biomass, and plant cover. The site was dominated by four early plant colonizers: Eschscholzia californica Cham., Hirschfeldia incana (L.) Lagr.-Fossat, Lolium perenne L., and Vulpia bromoides (L.) Gray. We determined exchangeable soil Cu and activity of free Cu2+ in 0.1 M KNO3 extracts using soil/solution ratio of 1/2.5. The effect of total soil Cu on plant responses was not significant (p > 0.05). In our field-collected soil series, exchangeable Cu was a better indicator of soil phytotoxicity than either total soil Cu or free Cu2+ in the soil solution. We determined upper critical threshold values for Cu exposure using the three plant traits cited above. The mean values of EC10, EC25, and EC50 (effective concentration at 10%, 25%, and 50%, respectively) of exchangeable soil Cu (in µg L-1) were 255, 391, and 533, respectively. The mean EC10, EC25 and EC50 values of pCu2+ were 7.5, 6.8, and 5.9, respectively. We highlight the importance of further studies on Cu phytotoxicity using actual field-contaminated soils.


Subject(s)
Copper/toxicity , Environmental Pollution/analysis , Plants/drug effects , Biomass , Chile , Copper/analysis , Lolium/drug effects , Metals/pharmacology , Mining , Soil , Soil Pollutants/analysis , Soil Pollutants/toxicity
8.
J Hered ; 110(6): 651-661, 2019 10 10.
Article in English | MEDLINE | ID: mdl-31420661

ABSTRACT

In this study, we quantified the 3 pivotal genetic processes (i.e., genetic diversity, spatial genetic structuring, and migration) necessary for a better biological understanding and management of the singular "living-fossil" and near-threatened mouse opossum marsupial Dromiciops gliroides, the "Monito del Monte," in south-central Chile. We used 11 microsatellite loci to genotype 47 individuals distributed on the mainland and northern Chiloé Island. Allelic richness, observed and expected heterozygosity, inbreeding coefficient, and levels of genetic differentiation were estimated. The genetic structure was assessed based on Bayesian clustering methods. In addition, potential migration scenarios were evaluated based on a coalescent theory framework and Bayesian approach to parameter estimations. Microsatellites revealed moderate to high levels of genetic diversity across sampled localities. Moreover, such molecular markers suggested that at least 2 consistent genetic clusters could be identified along the D. gliroides distribution ("Northern" and "Southern" cluster). However, general levels of genetic differentiation observed among localities and between the 2 genetic clusters were relatively low. Migration analyses showed that the most likely routes of migration of D. gliroides occurred 1) from the Southern cluster to the Northern cluster and 2) from the Mainland to Chiloé Island. Our results could represent critical information for future conservation programs and for a recent proposal about the taxonomic status of this unique mouse opossum marsupial.


Subject(s)
Animal Migration , Genetic Variation , Genetics, Population , Marsupialia/genetics , Alleles , Animals , Chile , Genotype , Microsatellite Repeats
9.
PeerJ ; 7: e6955, 2019.
Article in English | MEDLINE | ID: mdl-31149405

ABSTRACT

The temperate rainforests of southern Chile, a recognized biodiversity hotspot, were significantly affected by Pleistocene glacial cycles in their southern portion and have been severely disrupted mainly due to recent human activities. Additionally, the landscape is characterized by a series of potential barriers to gene flow, such as the Chacao Channel, Cordillera de Piuche in Chiloé and both the Ancud and the Corcovado gulfs. We used mitochondrial DNA sequences and microsatellite data across several populations to evaluate the genetic variability and structure of the sigmodontine rodent Abrothrix olivacea brachiotis, one of the most common species of small mammals and an inhabitant of these biodiverse forests. Sequencing data showed that along with the recovery of high haplotype variation for this species, there was a low nucleotide diversity between haplotypes, showing no genetic differences between the Chiloé Island and continental populations in southern Chile or through any other geographic barrier in the study area. However, microsatellite data exhibited some level of population structuring. The most evident clusterings were those of the Chiloé Island and that of North Patagonia. These findings are corroborated by a barrier analysis that showed a genetic barrier in the latter areas, whereas the Chacao Channel was not a significant barrier for this rodent. Overall, the genetic variability and structure of A. o. brachiotis was concordant with historical factors, such as the Last Glacial Maximum and the presence of geographic elements that isolate populations.

10.
Chemosphere ; 209: 960-963, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30114746

ABSTRACT

According to the Terrestrial Biotic Ligand Model, other cations might compete with Cu+2 for biotic ligand sites and provide a protective effect. In particular, evidence suggests Zn may alleviative Cu toxicity. No study, to the best of our knowledge, has focused explicitly on the alleviating effect Zn might have on Cu toxicity to soil microorganisms in field-contaminated soils. The aim of this study was to investigate the alleviating effect Zn might have on Cu toxicity to symbiotic nitrogen fixation in agricultural soils affected by copper mining in central Chile. The bioassay estimated the symbiotic nitrogen fixation capacity of a population of rhizobia in a specified soil, using the soil as inocula for Phaseolus vulgaris L. grown in a soil-less system (pots with perlite) irrigated with a sterile nitrogen-free nutrient solution. Among all soil physicochemical characteristics, the Cu/Zn ratio best explained changes in symbiotic nitrogen fixation. The effective concentration 50% (EC50) of Cu/Zn ratio for symbiotic nitrogen was equal to 1.2, with 95% confidence interval of 1.0-1.3. Symbiotic nitrogen fixation decreased with increased Cu/Zn ratio, thus suggesting that Zn alleviates Cu toxicity to nitrogen fixing microorganisms.


Subject(s)
Copper/chemistry , Mining/methods , Nitrogen Fixation/physiology , Soil Pollutants/chemistry , Soil/chemistry , Zinc/chemistry , Chile , Soil Pollutants/analysis
11.
Ecotoxicol Environ Saf ; 122: 448-54, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26398238

ABSTRACT

Several previous studies highlighted the importance of using field-collected soils-and not artificially-contaminated soils-for ecotoxicity tests. However, the use of field-collected soils presents several difficulties for interpretation of results, due to the presence of various contaminants and unavoidable differences in the physicochemical properties of the tested soils. The objective of this study was to estimate thresholds of metal toxicity in topsoils of 24 agricultural areas historically contaminated by mining activities in Chile. We performed standardized earthworm reproduction tests (OECD 222 and ISO 11268-2) with Eisenia fetida. Total soil concentrations of Cu, As, Zn, and Pb were in the ranges of 82-1295 mg kg(-1), 7-41 mg kg(-1), 86-345 mg kg(-1), and 25-97 mg kg(-1), respectively. In order to differentiate between the effects of different metals, we used regression analysis between soil metal concentrations and earthworm responses, as well as between metal concentrations in earthworm tissues and earthworm responses. Based on regression analysis, we concluded that As was a metal of prime concern for Eisenia fetida in soils affected by Cu mining activities, while Cu exhibited a secondary effect. In contrast, the effects of Zn and Pb were not significant. Soil electrical conductivity was another significant contributor to reproduction toxicity in the studied soils, forcing its integration in the interpretation of the results. By using soils with electrical conductivity ≤ 0.29 dS m(-1) (which corresponds to EC50 of salt toxicity to Eisenia fetida), it was possible to isolate the effect of soil salinity on earthworm reproduction. Despite the confounding effects of Cu, it was possible to determine EC10, EC25 and EC50 values for total soil As at 8 mg kg(-1), 14 mg kg(-1) and 22 mg kg(-1), respectively, for the response of the cocoon production. However, it was not possible to determine these threshold values for juvenile production. Likewise, we were able to determine EC10, EC25 and EC50 of earthworm tissue As of 38 mg kg(-1), 47 mg kg(-1), and 57 mg kg(-1), respectively, for the response of the cocoon production. Finally, we determined the no-observed effect concentration of tissue As in E. fetida of 24 mg kg(-1). Thus, earthworm reproduction test is applicable for assessment of metal toxicity in field-collected soils with low electrical conductivity, while it might have a limited applicability in soils with high electrical conductivity because the salinity-induced toxicity will hinder the interpretation of the results.


Subject(s)
Arsenic/toxicity , Copper/toxicity , Mining , Oligochaeta/drug effects , Soil Pollutants/toxicity , Soil/chemistry , Animals , Arsenic/analysis , Chile , Copper/analysis , Environmental Monitoring , Oligochaeta/chemistry , Oligochaeta/growth & development , Reproduction/drug effects , Soil Pollutants/analysis
12.
J Eukaryot Microbiol ; 55(6): 536-40, 2008.
Article in English | MEDLINE | ID: mdl-19120800

ABSTRACT

The blood of 21 adult South American mouse opossums (Thylamys elegans) captured from April through August of 2005 in central Chile was examined for parasites. Light microscopic analysis of blood smears initially suggested that a highly pleomorphic Hepatozoon species typical of American opossums was infecting erythrocytes. Unexpectedly, amplification by PCR and sequencing of a DNA fragment of the small subunit rDNA combined with phylogenetic analyses indicated that the parasite is not a member of the suborder Adeleorina, which includes the Haemogregarina and Hepatozoon species, but that it is a clearly distinct member of the suborder Eimeriorina, which includes the cyst-forming family Sarcocystidae. Therefore, a reclassification of this unusual intraerythrocytic apicomplexan will require additional life cycle, microscopic, and molecular analyses.


Subject(s)
Coccidiosis/veterinary , Erythrocytes/parasitology , Opossums/parasitology , Sarcocystidae/genetics , Sarcocystidae/isolation & purification , Animals , Chile , Coccidiosis/parasitology , DNA, Protozoan/genetics , DNA, Ribosomal/genetics , Molecular Sequence Data , Phylogeny , RNA, Ribosomal, 18S/genetics , Sarcocystidae/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...