Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol ; 185(3): 914-933, 2021 04 02.
Article in English | MEDLINE | ID: mdl-33793913

ABSTRACT

Rhamnogalacturonan-I biosynthesis occurs in the lumen of the Golgi apparatus, a compartment where UDP-Rhamnose and UDP-Galacturonic Acid are the main substrates for synthesis of the backbone polymer of pectin. Recent studies showed that UDP-Rha is transported from the cytosol into the Golgi apparatus by a family of six UDP-rhamnose/UDP-galactose transporters (URGT1-6). In this study, analysis of adherent and soluble mucilage (SM) of Arabidopsis thaliana seeds revealed distinct roles of URGT2, URGT4, and URGT6 in mucilage biosynthesis. Characterization of SM polymer size showed shorter chains in the urgt2 urgt4 and urgt2 urgt4 urgt6 mutants, suggesting that URGT2 and URGT4 are mainly involved in Rhamnogalacturonan-I (RG-I) elongation. Meanwhile, mutants in urgt6 exhibited changes only in adherent mucilage (AM). Surprisingly, the estimated number of RG-I polymer chains present in urgt2 urgt4 and urgt2 urgt4 urgt6 mutants was higher than in wild-type. Interestingly, the increased number of shorter RG-I chains was accompanied by an increased amount of xylan. In the urgt mutants, expression analysis of other genes involved in mucilage biosynthesis showed some compensation. Studies of mutants of transcription factors regulating mucilage formation indicated that URGT2, URGT4, and URGT6 are likely part of a gene network controlled by these regulators and involved in RG-I synthesis. These results suggest that URGT2, URGT4, and URGT6 play different roles in the biosynthesis of mucilage, and the lack of all three affects the production of shorter RG-I polymers and longer xylan domains.


Subject(s)
Arabidopsis Proteins/metabolism , Monosaccharide Transport Proteins/metabolism , Pectins/metabolism , Rhamnogalacturonans/metabolism , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant , Monosaccharide Transport Proteins/genetics , N-Glycosyl Hydrolases/genetics , N-Glycosyl Hydrolases/metabolism
2.
Front Plant Sci ; 11: 594544, 2020.
Article in English | MEDLINE | ID: mdl-33363558

ABSTRACT

Nucleotide sugar transporters (NSTs) are Golgi-localized proteins that play a role in polysaccharide biosynthesis by transporting substrates (nucleotide sugars) from the cytosol into the Golgi apparatus. In Arabidopsis, there is an NST subfamily of six members, called URGTs, which transport UDP-rhamnose and UDP-galactose in vitro. URGTs are very similar in protein sequences, and among them, URGT1 and URGT2 are highly conserved in protein sequence and also showed very similar kinetic parameters toward UDP-rhamnose and UDP-galactose in vitro. Despite the similarity in sequence and in vitro function, mutants in urgt1 led to a specific reduction in galactose in rosette leaves. In contrast, mutants in urgt2 showed a decrease in rhamnose content in soluble mucilage from seeds. Given these specific and quite different chemotypes, we wonder whether the differences in gene expression could explain the observed differences between the mutants. Toward that end, we analyzed whether URGT2 could rescue the urgt1 phenotype and vice versa by performing a promoter swapping experiment. We analyzed whether the expression of the URGT2 coding sequence, controlled by the URGT1 promoter, could rescue the urgt1 rosette phenotype. A similar strategy was used to determine whether URGT1 could rescue the urgt2 mucilage phenotype. Expression analysis of the swapped genes, using qRT-PCR, was similar to the native URGT1 and URGT2 genes in wild-type plants. To monitor the protein expression of the swapped genes, both URGTs were tagged with green fluorescent protein (GFP). Confocal microscopy analyses of the swapped lines containing URGT2-GFP showed fluorescence in motile dot-like structures in rosette leaves. Swapped lines containing URGT1-GFP showed fluorescence in dot-like structures in the seed coat. Finally, the expression of URGT2 in urgt1 mutants rescued galactose reduction in rosette leaves. In the same manner, the expression of URGT1 in urgt2 mutants recovered the content of rhamnose in soluble mucilage. Hence, our results showed that their expression in different organs modulates the role in vivo of URGT1 and URGT2. Likely, this is due to their presence in different cellular contexts, where other proteins, acting in partnership, may drive their functions toward different pathways.

3.
Plant Cell ; 31(8): 1913-1929, 2019 08.
Article in English | MEDLINE | ID: mdl-31126981

ABSTRACT

Because they suck phloem sap and act as vectors for phytopathogenic viruses, aphids pose a threat to crop yields worldwide. Pectic homogalacturonan (HG) has been described as a defensive element for plants during infections with phytopathogens. However, its role during aphid infestation remains unexplored. Using immunofluorescence assays and biochemical approaches, the HG methylesterification status and associated modifying enzymes during the early stage of Arabidopsis (Arabidopsis thaliana) infestation with the green peach aphid (Myzus persicae) were analyzed. Additionally, the influence of pectin methylesterase (PME) activity on aphid settling and feeding behavior was evaluated by free choice assays and the Electrical Penetration Graph technique, respectively. Our results revealed that HG status and HG-modifying enzymes are significantly altered during the early stage of the plant-aphid interaction. Aphid infestation induced a significant increase in total PME activity and methanol emissions, concomitant with a decrease in the degree of HG methylesterification. Conversely, inhibition of PME activity led to a significant decrease in the settling and feeding preference of aphids. Furthermore, we demonstrate that the PME inhibitor AtPMEI13 has a defensive role during aphid infestation, since pmei13 mutants are significantly more susceptible to M. persicae in terms of settling preference, phloem access, and phloem sap drainage.


Subject(s)
Aphids/pathogenicity , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Arabidopsis/parasitology , Pectins/metabolism , Animals , Arabidopsis/enzymology , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant
4.
J Exp Bot ; 70(19): 5071-5088, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31145803

ABSTRACT

Upon imbibition, epidermal cells of Arabidopsis thaliana seeds release a mucilage formed mostly by pectic polysaccharides. The Arabidopsis mucilage is composed mainly of unbranched rhamnogalacturonan-I (RG-I), with low amounts of cellulose, homogalacturonan, and traces of xylan, xyloglucan, galactoglucomannan, and galactan. The pectin-rich composition of the mucilage and their simple extractability makes this structure a good candidate to study the biosynthesis of pectic polysaccharides and their modification. Here, we characterize the mucilage phenotype of a mutant in the UDP-rhamnose/galactose transporter 2 (URGT2), which exhibits a reduction in RG-I and also shows pleiotropic changes, suggesting the existence of compensation mechanisms triggered by the lack of URGT2. To gain an insight into the possible compensation mechanisms activated in the mutant, we performed a transcriptome analysis of developing seeds using RNA sequencing (RNA-seq). The results showed a significant misregulation of 3149 genes, 37 of them (out of the 75 genes described to date) encoding genes proposed to be involved in mucilage biosynthesis and/or its modification. The changes observed in urgt2 included the up-regulation of UAFT2, a UDP-arabinofuranose transporter, and UUAT3, a paralog of the UDP-uronic acid transporter UUAT1, suggesting that they play a role in mucilage biosynthesis. Mutants in both genes showed changes in mucilage composition and structure, confirming their participation in mucilage biosynthesis. Our results suggest that plants lacking a UDP-rhamnose/galactose transporter undergo important changes in gene expression, probably to compensate modifications in the plant cell wall due to the lack of a gene involved in its biosynthesis.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Monosaccharide Transport Proteins/genetics , Plant Mucilage/biosynthesis , Transcriptome , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Monosaccharide Transport Proteins/metabolism , Mutation
5.
J Cell Biochem ; 119(8): 6857-6868, 2018 08.
Article in English | MEDLINE | ID: mdl-29693271

ABSTRACT

Low temperatures, salinity, and drought cause significant crop losses. These conditions involve osmotic stress, triggering transcriptional remodeling, and consequently, the restitution of cellular homeostasis and growth recovery. Protein transcription factors regulate target genes, thereby mediating plant responses to stress. bZIP17 is a transcription factor involved in cellular responses to salinity and the unfolded protein response. Because salinity can also produce osmotic stress, the role of bZIP17 in response to osmotic stress was assessed. Mannitol treatments induced the transcript accumulation and protein processing of bZIP17. Transcriptomic analyses showed that several genes associated with seed storage and germination showed lower expression in bzip17 mutants than in wild-type plants. Interestingly, bZIP17 transcript was more abundant in seeds, and germination analyses revealed that wild-type plants germinated later than bzip17 mutants in the presence of mannitol, but no effects were observed when the seeds were exposed to ABA. Finally, the transcript levels of bZIP17 target genes that control seed storage and germination were assessed in seeds exposed to mannitol treatments, which showed lower expression levels in bzip17 mutants compared to the wild-type seeds. These results suggest that bZIP17 plays a role in osmotic stress, acting as a negative regulator of germination through the regulation of genes involved in seed storage and germination.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Basic-Leucine Zipper Transcription Factors/metabolism , Gene Expression Regulation, Plant/physiology , Germination/physiology , Osmotic Pressure/physiology , Seeds/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Basic-Leucine Zipper Transcription Factors/genetics , Seeds/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...