Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Bioeng Biotechnol ; 11: 1049564, 2023.
Article in English | MEDLINE | ID: mdl-36815881

ABSTRACT

In vitro to in vivo extrapolation represents a critical challenge in toxicology. In this paper we explore extrapolation strategies for acetaminophen (APAP) based on mechanistic models, comparing classical (CL) homogeneous compartment pharmacodynamic (PD) models and a spatial-temporal (ST), multiscale digital twin model resolving liver microarchitecture at cellular resolution. The models integrate consensus detoxification reactions in each individual hepatocyte. We study the consequences of the two model types on the extrapolation and show in which cases these models perform better than the classical extrapolation strategy that is based either on the maximal drug concentration (Cmax) or the area under the pharmacokinetic curve (AUC) of the drug blood concentration. We find that an CL-model based on a well-mixed blood compartment is sufficient to correctly predict the in vivo toxicity from in vitro data. However, the ST-model that integrates more experimental information requires a change of at least one parameter to obtain the same prediction, indicating that spatial compartmentalization may indeed be an important factor.

2.
CPT Pharmacometrics Syst Pharmacol ; 12(5): 624-630, 2023 05.
Article in English | MEDLINE | ID: mdl-36710372

ABSTRACT

On November 30, 2021, the US Food and Drug administration (FDA) and the Center for Research on Complex Generics (CRCG) hosted a virtual public workshop titled "Establishing the Suitability of Model-Integrated Evidence (MIE) to Demonstrate Bioequivalence for Long-Acting Injectable and Implantable (LAI) Drug Products." This workshop brought relevant parties from the industry, academia, and the FDA in the field of modeling and simulation to explore, identify, and recommend best practices on utilizing MIE for bioequivalence (BE) assessment of LAI products. This report summerized presentations and panel discussions for topics including challenges and opportunities in development and assessment of generic LAI products, current status of utilizing MIE, recent research progress of utilizing MIE in generic LAI products, alternative designs for BE studies of LAI products, and model validation/verification strategies associated with different types of MIE approaches.


Subject(s)
Drugs, Generic , United States , Humans , Therapeutic Equivalency , United States Food and Drug Administration , Computer Simulation
3.
J Hepatol ; 64(4): 860-71, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26639393

ABSTRACT

BACKGROUND & AIMS: Recently, spatial-temporal/metabolic mathematical models have been established that allow the simulation of metabolic processes in tissues. We applied these models to decipher ammonia detoxification mechanisms in the liver. METHODS: An integrated metabolic-spatial-temporal model was used to generate hypotheses of ammonia metabolism. Predicted mechanisms were validated using time-resolved analyses of nitrogen metabolism, activity analyses, immunostaining and gene expression after induction of liver damage in mice. Moreover, blood from the portal vein, liver vein and mixed venous blood was analyzed in a time dependent manner. RESULTS: Modeling revealed an underestimation of ammonia consumption after liver damage when only the currently established mechanisms of ammonia detoxification were simulated. By iterative cycles of modeling and experiments, the reductive amidation of alpha-ketoglutarate (α-KG) via glutamate dehydrogenase (GDH) was identified as the lacking component. GDH is released from damaged hepatocytes into the blood where it consumes ammonia to generate glutamate, thereby providing systemic protection against hyperammonemia. This mechanism was exploited therapeutically in a mouse model of hyperammonemia by injecting GDH together with optimized doses of cofactors. Intravenous injection of GDH (720 U/kg), α-KG (280 mg/kg) and NADPH (180 mg/kg) reduced the elevated blood ammonia concentrations (>200 µM) to levels close to normal within only 15 min. CONCLUSION: If successfully translated to patients the GDH-based therapy might provide a less aggressive therapeutic alternative for patients with severe hyperammonemia.


Subject(s)
Hyperammonemia/drug therapy , Liver Diseases/drug therapy , Animals , Glutamate Dehydrogenase/physiology , Ketoglutaric Acids/therapeutic use , Male , Mice , Mice, Inbred C57BL
4.
Biol Open ; 1(8): 775-88, 2012 Aug 15.
Article in English | MEDLINE | ID: mdl-23213471

ABSTRACT

Proper lung functioning requires not only a correct structure of the conducting airway tree, but also the simultaneous development of smooth muscles and vasculature. Lung branching morphogenesis is strongly stereotyped and involves the recursive use of only three modes of branching. We have previously shown that the experimentally described interactions between Fibroblast growth factor (FGF)10, Sonic hedgehog (SHH) and Patched (Ptc) can give rise to a Turing mechanism that not only reproduces the experimentally observed wildtype branching pattern but also, in part counterintuitive, patterns in mutant mice. Here we show that, even though many proteins affect smooth muscle formation and the expression of Vegfa, an inducer of blood vessel formation, it is sufficient to add FGF9 to the FGF10/SHH/Ptc module to successfully predict simultaneously the emergence of smooth muscles in the clefts between growing lung buds, and Vegfa expression in the distal sub-epithelial mesenchyme. Our model reproduces the phenotype of both wildtype and relevant mutant mice, as well as the results of most culture conditions described in the literature.

5.
BMC Syst Biol ; 5: 184, 2011 Nov 03.
Article in English | MEDLINE | ID: mdl-22051045

ABSTRACT

BACKGROUND: The family of TGF-ß ligands is large and its members are involved in many different signaling processes. These signaling processes strongly differ in type with TGF-ß ligands eliciting both sustained or transient responses. Members of the TGF-ß family can also act as morphogen and cellular responses would then be expected to provide a direct read-out of the extracellular ligand concentration. A number of different models have been proposed to reconcile these different behaviours. We were interested to define the set of minimal modifications that are required to change the type of signal processing in the TGF-ß signaling network. RESULTS: To define the key aspects for signaling plasticity we focused on the core of the TGF-ß signaling network. With the help of a parameter screen we identified ranges of kinetic parameters and protein concentrations that give rise to transient, sustained, or oscillatory responses to constant stimuli, as well as those parameter ranges that enable a proportional response to time-varying ligand concentrations (as expected in the read-out of morphogens). A combination of a strong negative feedback and fast shuttling to the nucleus biases signaling to a transient rather than a sustained response, while oscillations were obtained if ligand binding to the receptor is weak and the turn-over of the I-Smad is fast. A proportional read-out required inefficient receptor activation in addition to a low affinity of receptor-ligand binding. We find that targeted modification of single parameters suffices to alter the response type. The intensity of a constant signal (i.e. the ligand concentration), on the other hand, affected only the strength but not the type of the response. CONCLUSIONS: The architecture of the TGF-ß pathway enables the observed signaling plasticity. The observed range of signaling outputs to TGF-ß ligand in different cell types and under different conditions can be explained with differences in cellular protein concentrations and with changes in effective rate constants due to cross-talk with other signaling pathways. It will be interesting to uncover the exact cellular differences as well as the details of the cross-talks in future work.


Subject(s)
Models, Biological , Signal Transduction , Transforming Growth Factor beta/metabolism , Computer Simulation , Kinetics , Ligands , Systems Biology , Transforming Growth Factor beta/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...