Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 159(12)2023 Sep 28.
Article in English | MEDLINE | ID: mdl-38127374

ABSTRACT

Using adiabatic molecular dynamics coupled with the fluid dynamics equations, we model nucleation in an expanding beam of water vapor and argon on a microsecond scale. The size distribution of clusters, their temperature, and pickup cross sections in dependence on velocity are investigated and compared to the geometric cross sections and the experiment. The clusters are warmer than the expanding gas because of the time scale of relaxation processes. We also suggest that their translational and rotational kinetic energies are modified due to evaporative cooling. The pickup cross sections determined for the final clusters using molecules of the same kind increase with decreasing velocity, still obeying the (a+bN1/3)2 law.

2.
J Chem Theory Comput ; 17(12): 7397-7405, 2021 Dec 14.
Article in English | MEDLINE | ID: mdl-34797064

ABSTRACT

Expansion of water vapor through a small orifice to a vacuum produces liquid or frozen clusters which in the experiment serve as model particles for atmospheric aerosols. Yet, there are controversies about the shape of these clusters, suggesting that the nucleation process is not fully understood. Such questions can be answered by molecular dynamics simulations; however, they require microsecond-scale runs with thousands of molecules and accurate energy conservation. The available highly parallel codes typically utilize domain decomposition and are inefficient for heterogeneous systems as clusters in a dilute gas. In this work, we present an implementation of molecular dynamics on graphics processing units based on the Verlet list and apply it to several systems for which experimental data are available. We reproduce sufficiently sized clusters but not the experimentally observed clusters of irregular shape.

3.
J Phys Chem Lett ; 11(11): 4443-4447, 2020 Jun 04.
Article in English | MEDLINE | ID: mdl-32419467

ABSTRACT

The surface tension of water is suspected to show a substantial increase at low temperatures, which is considered to be one of the many anomalies of water. The second inflection point (SIP) anomaly, originally claimed to be at around -8 °C, was experimentally refuted down to -25 °C by Hrubý et al. (J. Phys. Chem. Lett. 2014, 5, 425-428). Recent molecular simulations predict the SIP anomaly near or even below the homogeneous freezing limit of around -38 °C. To contribute to an ongoing discussion about the SIP anomaly, new experiments focused on extreme levels of supercooling were carried out in this study. Unique experimental data down to -31.4 °C were collected using two measuring techniques based on the capillary rise method. A significant deviation from the extrapolated IAPWS formulation R1-76(2014) for surface tension of ordinary water was detected below -20 °C. Contrary to previous data, new experiments provide room for an anomaly in the course of surface tension in the deeply supercooled region.

SELECTION OF CITATIONS
SEARCH DETAIL
...