Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(13)2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37447600

ABSTRACT

Gel dressings, composed of polymers both natural and synthetic, are successfully used in the treatment of burn wounds. They protect the burn wound site against adverse external factors, ensure an adequate level of tissue hydration, have soothing and pain-relieving properties, and also support the healing process and reduce the risk of pathological scars. Another promising material that can be used in the wound-healing process is an amnion membrane. Due to its valuable properties such as protecting the body against bacterial infections and permeability to nutrition, it has found usage in different brands of medicine. In this work, we have combined the beneficial properties of hydrogels and amnion in order to make the laminar dressing that may serve for wound healing. For that purpose, the physically crosslinked cryogel of poly(vinyl alcohol) (PVA) was covered with an amnion membrane. Subsequently, gamma irradiation was performed, leading to the simultaneous internal crosslinking of the hydrogel, its permanent bonding with the amnion, and dressing sterilization. The physicochemical properties of the dressing including gel fraction, swelling, and hardness were studied. Biological tests such as the MTT assay, antimicrobial activity, and histopathological examination confirmed that the obtained material constituted a promising candidate for further, more in-depth studies aiming at wound dressing application.

2.
Polymers (Basel) ; 15(5)2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36904499

ABSTRACT

Antibacterial polymeric materials are promising in the fight against resistant bacteria strains. Amongst them, cationic macromolecules with quaternary ammonium groups are one of intensively studied, as they interact with the bacterial membranes causing cell death. In this work, we propose to use nanostructures composed of polycations with star topology for the preparation of antibacterial materials. First, star polymers of N,N'-dimethylaminoethyl methacrylate and hydroxyl-bearing oligo(ethylene glycol) methacrylate P(DMAEMA-co-OEGMA-OH) were quaternized with various bromoalkanes and their solution behavior was studied. It was shown that in water two modes of star nanoparticles were observed, of diameters about 30 nm and up to 125 nm, independently of the quaternizing agent. Separately layers of P(DMAEMA-co-OEGMA-OH) stars were obtained. In this case, the chemical grafting of polymers to the silicon wafers modified with imidazole derivatives was applied, followed by the quaternization of the amino groups of polycations. A comparison of the quaternary reaction in solution and on the surface showed that in the solution it is influenced by the alkyl chain length of the quaternary agent, while on the surface such relationship is not observed. After physico-chemical characterization of the obtained nanolayers, their biocidal activity was tested against two strains of bacteria E. coli and B. subtilis. The best antibacterial properties exhibited layers quaternized with shorter alkyl bromide, where 100% growth inhibition of E. coli and B. subtilis after 24 h of contact was observed.

SELECTION OF CITATIONS
SEARCH DETAIL
...