Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Biol Med ; 157: 106719, 2023 05.
Article in English | MEDLINE | ID: mdl-36907032

ABSTRACT

Hyperactivity of the parasympathetic nervous system has been linked to the development of paroxysmal atrial fibrillation (AF). The parasympathetic neurotransmitter acetylcholine (ACh) causes a reduction in action potential (AP) duration (APD) and an increase in resting membrane potential (RMP), both of which contribute to enhance the risk for reentry. Research suggests that small-conductance calcium activated potassium (SK) channels may be an effective target for treating AF. Therapies targeting the autonomic nervous system, either alone or in combination with other drugs, have been explored and have been shown to decrease the incidence of atrial arrhythmias. This study uses computational modeling and simulation to examine the impact of SK channel block (SKb) and ß-adrenergic stimulation through Isoproterenol (Iso) on countering the negative effects of cholinergic activity in human atrial cell and 2D tissue models. The steady-state effects of Iso and/or SKb on AP shape, APD at 90% repolarization (APD90) and RMP were evaluated. The ability to terminate stable rotational activity in cholinergically-stimulated 2D tissue models of AF was also investigated. A range of SKb and Iso application kinetics, which reflect varying drug binding rates, were taken into consideration. The results showed that SKb alone prolonged APD90 and was able to stop sustained rotors in the presence of ACh concentrations up to 0.01 µM. Iso terminated rotors under all tested ACh concentrations, but resulted in highly-variable steady-state outcomes depending on baseline AP morphology. Importantly, the combination of SKb and Iso resulted in greater APD90 prolongation and showed promising anti-arrhythmic potential by stopping stable rotors and preventing re-inducibility.


Subject(s)
Adrenergic Agents , Atrial Fibrillation , Humans , Adrenergic Agents/metabolism , Adrenergic Agents/pharmacology , Adrenergic Agents/therapeutic use , Atrial Fibrillation/drug therapy , Acetylcholine/pharmacology , Acetylcholine/metabolism , Acetylcholine/therapeutic use , Heart Atria , Isoproterenol/pharmacology , Action Potentials
2.
Front Physiol ; 14: 1189464, 2023.
Article in English | MEDLINE | ID: mdl-38235381

ABSTRACT

In atrial fibrillation (AF), the ECG P-wave, which represents atrial depolarization, is replaced with chaotic and irregular fibrillation waves (f waves). The f-wave frequency, F f, shows significant variations over time. Cardiorespiratory interactions regulated by the autonomic nervous system have been suggested to play a role in such variations. We conducted a simulation study to test whether the spatiotemporal release pattern of the parasympathetic neurotransmitter acetylcholine (ACh) modulates the frequency of atrial reentrant circuits. Understanding parasympathetic involvement in AF may guide more effective treatment approaches and could help to design autonomic markers alternative to heart rate variability (HRV), which is not available in AF patients. 2D tissue and 3D whole-atria models of human atrial electrophysiology in persistent AF were built. Different ACh release percentages (8% and 30%) and spatial ACh release patterns, including spatially random release and release from ganglionated plexi (GPs) and associated nerves, were considered. The temporal pattern of ACh release, ACh(t), was simulated following a sinusoidal waveform of frequency 0.125 Hz to represent the respiratory frequency. Different mean concentrations (ACh¯) and peak-to-peak ranges of ACh (ΔACh) were tested. We found that temporal variations in F f, F f(t), followed the simulated temporal ACh(t) pattern in all cases. The temporal mean of F f(t), F¯f, depended on the fibrillatory pattern (number and location of rotors), the percentage of ACh release nodes and ACh¯. The magnitude of F f(t) modulation, ΔF f, depended on the percentage of ACh release nodes and ΔACh. The spatial pattern of ACh release did not have an impact on F¯f and only a mild impact on ΔF f. The f-wave frequency, being indicative of vagal activity, has the potential to drive autonomic-based therapeutic actions and could replace HRV markers not quantifiable from AF patients.

3.
Front Physiol ; 12: 674197, 2021.
Article in English | MEDLINE | ID: mdl-34456743

ABSTRACT

The autonomic nervous system (ANS) plays an essential role in the generation and maintenance of cardiac arrhythmias. The cardiac ANS can be divided into its extrinsic and intrinsic components, with the latter being organized in an epicardial neural network of interconnecting axons and clusters of autonomic ganglia called ganglionated plexi (GPs). GP ablation has been associated with a decreased risk of atrial fibrillation (AF) recurrence, but the accurate location of GPs is required for ablation to be effective. Although GP stimulation triggers both sympathetic and parasympathetic ANS branches, a predominance of parasympathetic activity has been shown. This study aims was to develop a method to locate atrial parasympathetic innervation sites based on measurements from a grid of electrograms (EGMs). Electrophysiological models representative of non-AF, paroxysmal AF (PxAF), and persistent AF (PsAF) tissues were developed. Parasympathetic effects were modeled by increasing the concentration of the neurotransmitter acetylcholine (ACh) in randomly distributed circles across the tissue. Different circle sizes of ACh and fibrosis geometries were considered, accounting for both uniform diffuse and non-uniform diffuse fibrosis. Computational simulations were performed, from which unipolar EGMs were computed in a 16 × 1 6 electrode mesh. Different distances of the electrodes to the tissue (0.5, 1, and 2 mm) and noise levels with signal-to-noise ratio (SNR) values of 0, 5, 10, 15, and 20 dB were tested. The amplitude of the atrial EGM repolarization wave was found to be representative of the presence or absence of ACh release sites, with larger positive amplitudes indicating that the electrode was placed over an ACh region. Statistical analysis was performed to identify the optimal thresholds for the identification of ACh sites. In all non-AF, PxAF, and PsAF tissues, the repolarization amplitude rendered successful identification. The algorithm performed better in the absence of fibrosis or when fibrosis was uniformly diffuse, with a mean accuracy of 0.94 in contrast with a mean accuracy of 0.89 for non-uniform diffuse fibrotic cases. The algorithm was robust against noise and worked for the tested ranges of electrode-to-tissue distance. In conclusion, the results from this study support the feasibility to locate atrial parasympathetic innervation sites from the amplitude of repolarization wave.

4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 2303-2306, 2020 07.
Article in English | MEDLINE | ID: mdl-33018468

ABSTRACT

There is increasing evidence on the role of the autonomic nervous system in the pathogenesis of atrial fibrillation. Interventions targeting autonomic modulation of atrial electrical activity have been shown to reduce the incidence of atrial arrhythmias. Additionally, recent investigations have proved that pharmacological therapies inhibiting small-conductance calcium-activated potassium (SK) channels are able to lessen cholinergic effects in the atria.In this study we use computational modeling and simulation to test individual and combined effects of SK channel block and adrenergic stimulation in counteracting detrimental effects induced by the parasympathetic neurotransmitter acetylcholine (ACh) on human atrial electrophysiology. Cell and tissue models are built that incorporate descriptions of SK channels as well as of isoproterenol (Iso)- and ACh-mediated regulation of the atrial action potential (AP). Three different cellular AP models, representing a range of physiological AP shapes, are considered and both homogeneous and heterogeneous ACh distributions in atrial tissue are simulated.At the cellular level, SK channel block is demonstrated to partially revert shortening of AP duration (APD) mediated by ACh at various doses, whereas 1 µM Iso has a variable response depending on the AP shape. The combination of SK block and Iso is in all cases able to take APD back to baseline levels, recovering between 82% and 120% of the APD shortening induced by 0.1 µM ACh. At the tissue level, SK block and Iso alone or in combination do not exert remarkable effects on conduction velocity, but the combination of the two is able to notably prolong the ACh-mediated APD shortening, thus increasing the wavelength for reentry.In conclusion, the results from this study support the combination of SK channel block and adrenergic stimulation as a potential option to counteract parasympathetically-mediated proarrhythmic effects in the human atria.


Subject(s)
Acetylcholine , Atrial Fibrillation , Acetylcholine/pharmacology , Adrenergic Agents , Heart Atria , Humans , Isoproterenol/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...