Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Food Funct ; 11(9): 7584-7595, 2020 Sep 23.
Article in English | MEDLINE | ID: mdl-32821894

ABSTRACT

Mineral (Mg, Ca, Fe and Zn) bioaccessibility in common beans was evaluated taking into consideration the common bean food chain from postharvest storage over processing (soaking and cooking) until consumption. Beans were stored under realistic tropical conditions (35 °C and 80% RH) which resulted in significantly different cooking behaviour after 8 weeks compared to freshly harvested beans. Based on postcooking hardness, different storage times were selected: unstored, 8 and 20 weeks. Independently of storage conditions, beans were soaked overnight and cooked for 30, 60 or 120 min. The mineral bioaccessibility decreased with increase in both storage and cooking times. Decrease in mineral bioaccessibility with increasing storage time was proved to be the result of increasing mineral chelation of cell wall polymers (e.g. pectin). Additionally, we hypothesize that by cooking, mineral chelators become more accessible, e.g. through pectin solubilization phenomena, in turn capturing more free minerals leading to a reduced mineral bioaccessibility.


Subject(s)
Cooking , Food Storage , Minerals/analysis , Phaseolus , Calcium/analysis , Food Handling , Hot Temperature , Iron/analysis , Magnesium/analysis , Phaseolus/chemistry , Time Factors , Zinc/analysis
2.
Crit Rev Food Sci Nutr ; 60(5): 826-843, 2020.
Article in English | MEDLINE | ID: mdl-30632768

ABSTRACT

Plant-based foods gain more importance since they play a key role in sustainable, low-meat and healthy diets. In developing countries, these food products, especially legumes and cereals, are important staple foods. Nevertheless, the question arises on how efficient they are to deliver minerals and if it is useful to encourage their consumption to reduce the prevalence of mineral deficiencies? This review paper focuses on the discrepancy between the mineral content and the amount of minerals that can be released and absorbed from plant-based foods during human digestion which can be attributed to several inherent factors such as the presence of mineral antinutrients (phytic acid, polyphenols and dietary fiber) and physical barriers (surrounding macronutrients and cell wall). Further, this review paper summarizes the effects of different processing techniques (milling, soaking, dehulling, fermentation, germination and thermal processing) on mineral bioaccessibility and bioavailability of plant-based foods. The positive impact of these techniques mostly relies on the fact that antinutrients levels are reduced due to removal of fractions rich in antinutrients and/or due to their leaching into the processing liquid. Although processing can have a positive effect, it also can induce leaching out of minerals and a reduced mineral bioaccessibility and bioavailability.


Subject(s)
Crops, Agricultural/metabolism , Food Handling , Minerals/metabolism , Biological Availability , Edible Grain/metabolism , Fabaceae/metabolism , Humans , Phytic Acid/metabolism
3.
Carbohydr Polym ; 197: 460-468, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-30007635

ABSTRACT

This work explored the influence of the citrus pectin degree and pattern of methylesterification on its interaction with Zn2+ using isothermal titration calorimetry (ITC). Pectin samples with a comparable degree of methylesterification (DM) but distinct distribution patterns of non-methylesterified carboxylic groups (absolute degree of blockiness, DBabs) were produced through enzymatic (blockwise pattern) or alkaline (random pattern) demethylesterification. The pectin-Zn2+ interaction was found to be endothermic, in which a positive entropy change compensated for the unfavorable endothermic enthalpy change, driving the interaction between pectin and Zn2+. Decreasing pectin DM or increasing DBabs promoted Zn2+ binding, with the estimated binding capacity (mol Zn2+/mol GalA) and binding constant (mM-1) being mainly determined by pectin DBabs, rather than DM. ITC was found to be a useful technique to study the pectin-cation interaction, however, low DM pectin samples are sensitive to gelling and therefore more difficult to study.

4.
Food Chem ; 241: 86-96, 2018 Feb 15.
Article in English | MEDLINE | ID: mdl-28958563

ABSTRACT

The present work explored the lipid antioxidant capacity of citrus pectin addition to 5%(w/v) linseed/sunflower oil emulsions stabilized with 0.5%(w/v) Tween 80, as affected by pectin molecular characteristics. The peroxide formation in the emulsions, containing tailored pectin structures, was studied during two weeks of storage at 35°C. Low demethylesterified pectin (≤33%) exhibited a higher antioxidant capacity than high demethylesterified pectin (≥58%), probably due to its higher chelating capacity of pro-oxidative metal ions (Fe2+), whereas the distribution pattern of methylesters along the pectin chain only slightly affected the antioxidant capacity. Nevertheless, pectin addition to the emulsions caused emulsion destabilization probably due to depletion or bridging effect, independent of the pectin structural characteristics. These results evidence the potential of structurally modified citrus pectin as a natural antioxidant in emulsions. However, optimal conditions for emulsion stability should be carefully selected.


Subject(s)
Antioxidants/chemistry , Flax , Helianthus , Pectins/analysis , Drug Stability , Emulsions , Linseed Oil , Lipids , Oxidation-Reduction , Plant Oils , Sunflower Oil , Water
5.
Compr Rev Food Sci Food Saf ; 17(6): 1576-1594, 2018 Nov.
Article in English | MEDLINE | ID: mdl-33350138

ABSTRACT

Pectin is an anionic cell wall polysaccharide which is known to interact with divalent cations via its nonmethylesterified galacturonic acid units. Due to its cation-binding capacity, extracted pectin is frequently used for several purposes, such as a gelling agent in food products or as a biosorbent to remove toxic metals from waste water. Pectin can, however, possess a large variability in molecular structure, which influences its cation-binding capacity. Besides the pectin structure, several extrinsic factors, such as cation type or pH, have been shown to define the cation binding of pectin. This review paper focuses on the research progress in the field of pectin-divalent cation interactions and associated functional properties. In addition, it addresses the main research gaps and challenges in order to clearly understand the influence of pectin structural properties on its divalent cation-binding capacity and associated functionalities. This review reveals that many factors, including pectin molecular structure and extrinsic factors, influence pectin-cation interactions and its associated functionalities, which makes it difficult to predict the pectin-cation-binding capacity. Despite the limited information available, determination of the cation-binding capacity of pectins with distinct structural properties using equilibrium adsorption experiments or isothermal titration calorimetry is a promising tool to gain fundamental insights into pectin-cation interactions. These insights can then be used in targeted pectin structural modification, in order to optimize the cation-binding capacity and to promote pectin-cation interactions, for instance for a structure build-up in food products without compromising the mineral nutrition value.

SELECTION OF CITATIONS
SEARCH DETAIL
...