Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters










Publication year range
1.
Macromol Rapid Commun ; : e2400400, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38981020

ABSTRACT

With the continuous development of preventive and therapeutic vaccines, traditional adjuvants cannot provide sufficient immune efficacy and it is of high necessity to develop safe and effective novel nanoparticle-based vaccine adjuvants. α-Tocopherol (TOC) is commonly used in oil-emulsion adjuvant systems as an immune enhancer, yet its bioavailability is limited by poor water solubility. This study aims to develop TOC-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (TOC-PLGA NPs) to explore the potential of TOC-PLGA NPs as a novel nanoparticle-immune adjuvant. TOC-PLGA NPs are prepared by a nanoprecipitation method and their physicochemical properties are characterized. It is shown that TOC-PLGA NPs are 110.8 nm, polydispersity index value of 0.042, and Zeta potential of -13.26 mV. The encapsulation efficiency and drug loading of NPs are 82.57% and 11.80%, respectively, and the cumulative release after 35 days of in vitro testing reaches 47%. Furthermore, TOC-PLGA NPs demonstrate a superior promotion effect on RAW 264.7 cell proliferation compared to PLGA NPs, being well phagocytosed and also promoting antigen uptake by macrophages. TOC-PLGA NPs can strongly upregulate the expression of co-stimulatory surface molecules and the secretion of cytokines. In conclusion, TOC-PLGA NPs can be a novel vaccine adjuvant with excellent biocompatibility and significant immune-enhancing activity.

2.
Biomater Sci ; 12(14): 3659-3671, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38860438

ABSTRACT

Intravesical instillation is an effective post-treatment for bladder cancer performed by delivering medications directly into the bladder to target the remaining cancer cells. The current study thus aimed to develop porous poly(L-lactide-co-ε-caprolactone) (PLCL) microspheres encapsulated with 10-hydroxycamptothecin (HCPT) via microfluidics to serve as a drug delivery system with persistent floating capacity and sustained HCPT-release property for intravesical instillation. A microfluidic device was designed to fabricate PLCL microspheres and encapsulate HCPT (HCPT-MS) within them; methanol and tridecane were introduced into an oil phase as a co-solvent and pore-forming agent, respectively, to regulate the floating ability of microspheres. The physicochemical properties of the resulting microspheres were characterized, and the floating behavior, release profile and anti-tumor effects of HCPT-MS were investigated. The obtained spherical HCPT-MS were 119.23 µm in size, monodisperse, and featured a porous concave surface and hollow structure. The encapsulation efficiency and drug loading of HCPT within HCPT-MS was around 67% and 4.9%, respectively. HCPT-MS exhibited impressive floating capabilities in water, PBS and artificial urine even in a simulated bladder dynamic environment. These microspheres remained afloat after being subjected to 90 repeated simulated urination processes. The sustained release of HCPT from these floating microspheres lasted for more than 10 days. The IC50 (half maximal inhibitory concentration) of HCPT-MS was calculated to be 52.14 µg mL-1. T24 cells (human bladder cancer cells) when cultured with HCPT-MS at such a concentration were severely inhibited, and the inhibition further enhanced with an increase in culture time. Hence, the feasibility of the current porous and floating HCPT-MS as a formulation for intravesical instillation to deliver medications into the bladder with sustained release and stability was thus substantiated.


Subject(s)
Camptothecin , Microspheres , Polyesters , Urinary Bladder Neoplasms , Camptothecin/administration & dosage , Camptothecin/analogs & derivatives , Camptothecin/chemistry , Camptothecin/pharmacology , Polyesters/chemistry , Porosity , Humans , Cell Line, Tumor , Urinary Bladder Neoplasms/drug therapy , Administration, Intravesical , Drug Liberation , Drug Carriers/chemistry , Animals , Drug Delivery Systems , Antineoplastic Agents, Phytogenic/administration & dosage , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry
3.
J Biomater Sci Polym Ed ; 35(8): 1197-1213, 2024 06.
Article in English | MEDLINE | ID: mdl-38421916

ABSTRACT

Rapamycin (RAP) is currently being developed as potential antibreast cancer drug. However, its poor solubility completely limits its use. The aim of this study was to develop polyethylene glycol-poly(lactide-co-glycolide) (PEG-PLGA)-based nanoparticles (NPs) to load RAP via microfluidics with an appropriate polyethylene glycol (PEG) content to enhance the bioavailability of RAP. Polydimethylsiloxane (PDMS) chips with a Y-shaped channel were designed to obtain RAP-loaded PEG-PLGA NPs (RAP-PEG-PLGA). The entrapment efficiency (EE) and drug loading (DL) as well as release profile of RAP-PEG-PLGA were evaluated, and their resistance to plasma albumin adsorption of NPs with different PEG contents was evaluated and compared. RAW264.7 and 4T1 cells were used to assess the antiphagocytic and anticancer cells effect of NPs, respectively. RAP-PEG-PLGA of around 124 nm in size were successfully prepared with the EE of 82.0% and DL of 12.3%, and sustained release for around 40 d. A PEG relative content of 10% within the PEG-PLGA molecule was shown superior in resisting protein adsorption. RAP-PEG-PLGA inhibited the growth of breast cancer cells when the concentration was over 10 µg/mL, and the inhibition efficiency was significantly higher than free RAP. Hence, the current RAP-PEG-PLGA could be a potential therapeutic system for breast cancer treatment.


Subject(s)
Drug Carriers , Nanoparticles , Polyethylene Glycols , Sirolimus , Sirolimus/chemistry , Sirolimus/administration & dosage , Sirolimus/pharmacology , Sirolimus/pharmacokinetics , Polyethylene Glycols/chemistry , Animals , Nanoparticles/chemistry , Mice , Drug Carriers/chemistry , Drug Liberation , Cell Line, Tumor , RAW 264.7 Cells , Particle Size , Chemical Precipitation , Adsorption , Humans , Polyesters
4.
Int J Biol Macromol ; 257(Pt 1): 128596, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38052282

ABSTRACT

Guided bone regeneration (GBR) is an effective strategy to promote periodontal tissue repair. The current study aimed to develop an injectable gel for GBR, composed of photo-cross-linkable hyaluronic acid and mesoporous bioactive glass nanoparticles (MBGNs) loaded with antibacterial minocycline hydrochloride (MNCl). Hyaluronic acid modified with methacrylic anhydride (MHA) that could be cross-linked under UV irradiation was first synthesized. Dynamic rheological evaluation of MHA under UV was carried out to determine its in-situ gelling feasibility and stability. Morphological and mechanical characterization was performed to determine the optimal concentration of MHA gels. Sol-gel derived MBGNs loaded with MNCl were further incorporated into MHA gels to obtain the injectable drug-loaded MBGN-MNCl/MHA gels. In vitro antibacterial, anti-inflammatory and osteogenic effects of this gel were evaluated. It was shown that the MHA gel obtained from 3 % MHA under UV treatment of 30s exhibited a suitable porous structure with a compressive strength of 100 kPa. MBGNs with particle size of ∼120 nm and mesopores were confirmed by TEM and SEM. MBGNs had a loading capacity of ∼120 mg/g for MNCl, exhibiting a sustained release behavior. The MBGN-MNCl/MHA gel was shown to effectively inhibit the proliferation of Streptococcus mutans and the expression of pro-inflammatory factors IL-6 and TNF-α by macrophages. It could on the other hand significantly promote the expression of osteogenic-related genes ALP, Runx2, OPN, and osterix of MC3T3-E1 cells. In conclusion, the current design using photo-crosslinkable MHA gel embedded with MNCl loaded MBGNs can serve as a promising injectable formulation for GBR treatment of irregular periodontal defects.


Subject(s)
Nanoparticles , Periodontitis , Humans , Hyaluronic Acid , Gels , Anti-Bacterial Agents/pharmacology , Nanoparticles/chemistry , Periodontitis/drug therapy , Glass/chemistry
5.
J Biomater Appl ; 38(7): 821-833, 2024 02.
Article in English | MEDLINE | ID: mdl-38145897

ABSTRACT

The high hydrophobicity and low oral availability of immunosuppressive drug, rapamycin, seriously limit its application. It was thus aimed to develop a PEG-PLGA based nano-loading system for rapamycin delivery to achieve improved bioavailability with sustained effects via a novel microfluidic chip and manipulation of the hydrophobic PLGA chain length. PDMS based microfluidic chip with Y shape was designed and PEG-PLGA polymers with different PLGA chain length were used to prepare rapamycin nano-delivery systems. Dendritic cells were selected to evaluate the immunosuppressive effect of the nanoparticles including cytotoxicity assay, dendritic cell activation, and cytokine levels. The effects of different PEG-PLGA nanoparticles on the immunomodulatory properties were finally compared. It was shown that PEG-PLGA could be successfully used for rapamycin encapsulation via microfluidics to obtain nano-delivery systems (Rapa&P-20 k, Rapa&P-50 k and Rapa&P-95 k) ranging from 100 nm to 116 nm. The encapsulation efficiency was ranged from 69.70% to 84.55% and drug loading from 10.45% to 12.68%. The Rapa&P-50 k (PLGA chain length: 50 k) could achieve the highest drug loading (DL) and encapsulation efficiency (EE) as 12.68% and 84.55%. The encapsulated rapamycin could be gradually released from three nanoparticles for more than 1 month without any noticeable burst release. The Rapa & P nanoparticles exhibited enhanced immunosuppressive effects over those of free rapamycin as shown by the expression of CD40 and CD80, and the secretion of IL-1ß, IL-12 and TGF-ß1. Rapa&P-50 k nanoparticles could be the optimal choice for rapamycin delivery as it also achieved the most effective immunosuppressive property. Hence, this study could provide an efficient technology with superior manipulation to offer a solution for rapamycin delivery and clinical application.


Subject(s)
Nanoparticles , Sirolimus , Sirolimus/pharmacology , Microfluidics , Polyesters , Polyethylene Glycols/chemistry , Immunosuppressive Agents/pharmacology , Nanoparticles/chemistry , Drug Carriers/chemistry , Particle Size
6.
Biomater Adv ; 151: 213457, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37172432

ABSTRACT

Biodegradable microspheres offer great potential as functional building blocks for bottom-up bone tissue engineering. However, it remains challenging to understand and regulate cell behaviors in fabrication of injectable bone microtissues using microspheres. The study aims to develop an adenosine functionalized poly (lactide-co-glycolide) (PLGA) microsphere to enhance cell loading efficiency and inductive osteogenesis potential, and subsequently to investigate adenosine signaling-mediated osteogenic differentiation in cells grown on three-dimensional (3D) microspheres and flat control. Adenosine was loaded on PLGA porous microspheres via polydopamine coating, and the cell adhesion and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) were improved on these microspheres. It was found that adenosine A2B receptor (A2BR) was further activated by adenosine treatment, which consequently enhanced osteogenic differentiation of BMSCs. This effect was more obvious on 3D microspheres compared to 2D flats. However, the promotion of osteogenesis on the 3D microspheres was not eliminated by blocking the A2BR with antagonist. Finally, adenosine functionalized microspheres could fabricate injectable microtissues in vitro, and improve cell delivery and osteogenic differentiation after injection in vivo. Therefore, it is considered that adenosine loaded PLGA porous microspheres will be of good value in minimally invasive injection surgery and bone tissue repair.


Subject(s)
Mesenchymal Stem Cells , Osteogenesis , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/pharmacology , Receptor, Adenosine A2B , Microspheres , Porosity , Cell Differentiation
7.
Int J Biol Macromol ; 242(Pt 1): 124625, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37146858

ABSTRACT

The growth and repair of skeletal muscle are due in part to activation of muscle precursor cells, commonly known as satellite cells or myoblasts. In order to acquire enough cells for neoskeletal muscle regeneration, it is urgent to develop microcarriers for skeletal myoblasts proliferation with a considerable efficiency. The current study was thus proposed to develop a microfluidic technology to manufacture porous poly(l-lactide-co-ε-caprolactone) (PLCL) microcarriers of high uniformity, and porosity was manipulated via camphene to suit the proliferation of C2C12 cells. A co-flow capillary microfluidic device was first designed to obtain PLCL microcarriers with different porosity. The attachment and proliferation of C2C12 cells on these microcarriers were evaluated and the differentiation potential of expanded cells were verified. The obtained porous microcarriers were all uniform in size with a high mono-dispersity (CV < 5 %). The content of camphene rendered effects on the size, porosity, and pore size of microcarriers, and porous structure addition produced a softening of their mechanical properties. The one of 10 % camphene (PM-10) exhibited the superior expansion for C2C12 cells with the number of cells after 5 days of culture reached 9.53 times of the adherent cells on the first day. The expanded cells from PM-10 still retained excellent myogenic differentiation performance as the expressions of MYOD, Desmin and MYH2 were intensively enhanced. Hence, the current developed porous PLCL microcarriers could offer as a promising type of substrates not only for in vitro muscular precursor cells expansion without compromising any multipotency but also have the potential as injectable constructs to mediate muscle regeneration.


Subject(s)
Microfluidics , Myoblasts , Porosity , Myoblasts/metabolism
8.
Bioresour Bioprocess ; 10(1): 14, 2023 Feb 21.
Article in English | MEDLINE | ID: mdl-38647890

ABSTRACT

Fish swim bladders used to be considered as byproducts or waste in fishery; however, they are potential materials for biological medicine with abundant collagen. In this work, an efficient noncytotoxic decellularization process using sodium dodecyl sulfate (SDS) ternary system assisted with supercritical carbon dioxide (scCO2) as the green extraction fluid and ethanol (ET) as the cosolvent has been developed to harvest acellular fish swim bladders (AFSBs). The experimental results show that the tissue treated by SDS assisted with scCO2 and ethanol at 37 °C and 25 MPa can be decellularized thoroughly and maintains intact fibers and uniform pore distribution, which resulting in a tensile strength of 5.61 MPa and satisfactory biocompatibility. Meanwhile, the residual SDS content in scCO2/SDS/ET ternary system is 0.0122% which is significantly lower than it in scCO2/SDS system due to the enhanced mass transfer rate of SDS in tissues by scCO2 with ethanol. The synergy between SDS and ethanol can enhance the diffusion coefficient and the solubility of SDS in scCO2, which reduced the contact time between SDS and tissues. Meaningfully, the results obtained in this work can not only provide a novel strategy to produce acellular matrix with superior properties, but also offer a further understanding of the decellularization through scCO2 extraction processing with the synergy of suitable detergent/cosolvent.

9.
Int J Biol Macromol ; 216: 1-13, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35777503

ABSTRACT

Human umbilical cord mesenchymal stem cells (HUMSCs) are one of the most attractive sources of stem cells, and it is meaningful to design and develop a type of microcarriers with suitable mechanical strength for HUMSCs proliferation in order to acquire enough cells for cell-based therapy. Alginate-gelatin core-shell (AG) soft microcarriers were thus fabricated via a microfluidic device with droplet shearing/gelation facilities and surface coating for in vitro expansion of HUMSCs. The attachment and proliferation of HUMSCs on AG microcarriers with different mechanical strengths modulated by gelatin coating was studied, and the harvested cells were characterized to verity their differentiation potential. The obtained core-shell microcarriers were all uniform in size with a high mono-dispersity (CV < 5 %). An increase in the gelatin surface coating concentration from 0.5 % to 1.5 % would lead to the reduction in both the particle size of the microcarriers and swelling ratio upon the contact of culture medium, but increased elastic modulus. Microcarriers of 245.12 µm with a gelatin coating elastic modulus of 27.5 kPa (AG10) were found to be the optimal substrate for HUMSCs with an initial attachment efficiency of 44.41 % and a 5-day expansion efficiency of 647 %. The cells harvested from AG10 still reserved their outstanding pluripotency. Fresh AG10 could smoothly transfer cells from a running microcarrier-cell system of confluence to serve as a convenient way of scaling-up the existing culture. The current study thus developed suitable microcarriers, AG10, for in vitro HUMSCs expansion with well reserve of cell multipotency, and also provided a manufacturing and surface manipulating strategy of precise production and fine regulation of microcarrier properties.


Subject(s)
Alginates , Mesenchymal Stem Cells , Alginates/chemistry , Cell Differentiation , Cell Proliferation , Gelatin/metabolism , Humans , Umbilical Cord
10.
Front Bioeng Biotechnol ; 9: 630977, 2021.
Article in English | MEDLINE | ID: mdl-34178953

ABSTRACT

Guided tissue regeneration (GTR) is a promising treatment for periodontal tissue defects, which generally uses a membrane to build a mechanical barrier from the gingival epithelium and hold space for the periodontal regeneration especially the tooth-supporting bone. However, existing membranes possess insufficient mechanical properties and limited bioactivity for periodontal bone regenerate. Herein, fish collagen and polyvinyl alcohol (Col/PVA) dual-layer membrane were developed via a combined freezing/thawing and layer coating method. This dual-layer membrane had a clear but contact boundary line between collagen and PVA layers, which were both hydrophilic. The dual membrane had an elongation at break of 193 ± 27% and would undergo an in vitro degradation duration of more than 17 days. Further cell experiments showed that compared with the PVA layer, the collagen layer not only presented good cytocompatibility with rat bone marrow-derived mesenchymal stem cells (BMSCs), but also promoted the osteogenic genes (RUNX2, ALP, OCN, and COL1) and protein (ALP) expression of BMSCs. Hence, the currently developed dual-layer membranes could be used as a stable barrier with a stable degradation rate and selectively favor the bone tissue to repopulate the periodontal defect. The membranes could meet the challenges encountered by GTR for superior defect repair, demonstrating great potential in clinical applications.

11.
Int J Pharm ; 593: 120173, 2021 Jan 25.
Article in English | MEDLINE | ID: mdl-33321168

ABSTRACT

The current study explored the feasibility of a microfluidic preparation of PLGA composite microspheres with mesoporous silica nanoparticles (MSNs) to finely manipulate the drug release behaviors of the microspheres. MSNs were synthesized via a hydrothermal method, and PLGA microspheres loaded with MSNs (PLGA-MSNs) were prepared using a capillary-based three-phase microfluidic device. Drug loading and release behaviors using rhodamine B (RB) as a water-soluble model drug were investigated and compared with those of PLGA microspheres. MSNs with an average particle size of 119 nm, a specific surface area of 902.5 cm2/g, and a pore size of approximately 5 nm were obtained. The mean diameter of PLGA-MSNs was 56 µm (CV = 4.91%). A sustained release duration of encapsulated RB from PLGA-MSNs for 4 months was achieved without any observable burst release. PLGA microspheres with monodispersion could also allow for a similar release duration of encapsulated RB but encountered a burst release in the mid-term of the studied duration. PLGA-MSNs had a denser outer PLGA layer and a more centralized hollow hole than PLGA microspheres without MSNs. Hence, the incorporation of MSNs into PLGA microspheres via microfluidics could be an efficient strategy to finely tune the drug release behavior of PLGA microspheres.


Subject(s)
Nanoparticles , Silicon Dioxide , Drug Carriers , Drug Liberation , Microfluidics , Microspheres , Particle Size
12.
Tissue Eng Part C Methods ; 26(8): 418-432, 2020 08.
Article in English | MEDLINE | ID: mdl-32552581

ABSTRACT

Hydrogel microspheres have been widely used as cell carriers and three-dimensional cell culture matrices. However, these microspheres are associated with several unfavorable properties for bone tissue engineering applications, for example, their surface is too smooth to attach cells and they do not contain inorganic materials. This article presents a new method to overcome these disadvantages by depositing CaCO3 crystals on the hydrogel microsphere surface. Specifically, we used a nonplanar flow-focusing microfluidic device to produce gelatin methacrylate (GelMA)-/Na2CO3-based microspheres. We subsequently obtained CaCO3 crystals by a chemical reaction between Na2CO3 and CaCl2. The efficacy of this method was demonstrated by in vitro experiments with human umbilical vein endothelial cells (HUVEC) and immortalized mouse embryonic fibroblasts (iMEF). Cell culture on GelMA/CaCO3 microspheres showed that cells can easily attach and adhere to GelMA/CaCO3 microspheres and maintain high viability. Alkaline phosphatase (ALP) expression was increased as well. These results suggest that this novel microsphere has a high potential for bone tissue engineering applications. Impact statement Microspheres as cell culture substrates have attracted a great deal of attention. The combination of organic and inorganic materials offers the unique merits in bone tissue engineering. In this study, there are two contributions. First, the organic and inorganic material of gelatin methacrylate (GelMA) and CaCO3 were successfully combined, especially, CaCO3 was formed as crystals to enhance cell attachment. Second, microspheres were successfully fabricated with one-step process: that is, the microfluidic technique was coupled with the CaCO3 precipitation in situ. Cell culture shows that the GelMA/CaCO3 microspheres proposed in this study have a high potential for bone tissue engineering applications.


Subject(s)
Bone and Bones/physiology , Calcium Carbonate/chemistry , Cell Culture Techniques/methods , Gelatin/chemistry , Methacrylates/chemistry , Microspheres , Tissue Engineering , Alkaline Phosphatase/metabolism , Animals , Cell Adhesion , Cell Proliferation , Cell Survival , Cells, Cultured , Crystallization , Fibroblasts/cytology , Human Umbilical Vein Endothelial Cells/cytology , Humans , Mice , Swine
13.
Polymers (Basel) ; 12(4)2020 Apr 02.
Article in English | MEDLINE | ID: mdl-32252222

ABSTRACT

Polycaprolactone (PCL) scaffolds have recently been developed via efficient and green supercritical carbon dioxide (scCO2) melt-state foaming. However, previously reported gas-foamed scaffolds sometimes showed insufficient interconnectivity or pore size for tissue engineering. In this study, we have correlated the thermal and rheological properties of PCL scaffolds with their porous morphology by studying four foamed samples with varied molecular weight (MW), and particularly aimed to clarify the required properties for the fabrication of scaffolds with favorable interconnected macropores. DSC and rheological tests indicate that samples show a delayed crystallization and enhanced complex viscosity with the increasing of MW. After foaming, scaffolds (27 kDa in weight-average molecular weight) show a favorable morphology (pore size = 70-180 µm, porosity = 90% and interconnectivity = 96%), where the lowest melt strength favors the generation of interconnected macropore, and the most rapid crystallization provides proper foamability. The scaffolds (27 kDa) also possess the highest Young's modulus. More importantly, owing to the sufficient room and favorable material transportation provided by highly interconnected macropores, cells onto the optimized scaffolds (27 kDa) perform vigorous proliferation and superior adhesion and ingrowth, indicating its potential for regeneration applications. Furthermore, our findings provide new insights into the morphological control of porous scaffolds fabricated by scCO2 foaming, and are highly relevant to a broader community that is focusing on polymer foaming.

14.
Mater Sci Eng C Mater Biol Appl ; 109: 110574, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32228932

ABSTRACT

Polyglycolic acid (PGA) is a faster biodegradable polymer for various implants, frequently causing different macrophages' activation. In this study, we undertook a comparable study of PGA's degradation on macrophages' activation with different PGA crystallinity (in porous and fibrous 3D scaffolding format) in an in vitro and in vivo model. The incubation medium containing PGA degradation products, with different pH value of 7.1, 6.1 and 3.6, was added to RAW 264.7 macrophages' culture to simulate different degradation phases. The addition of hydrochloric acid with the same pH values in the culture media was used to compare and simplify the acid types' effect on macrophages. The scaffolds were implanted to mouse subcutaneously for 6 weeks. To correlate the degradation rate between the in vitro and in vivo models, PGA scaffolds were grafted by rhodamine-b covalently enabling the detection of PGA degradation through fluorescence intensity decay. It was confirmed that porous PGA degraded faster than fibrous scaffolds due to lower crystallinity. The acidic PGA degradation products (GA) did not promote IL-10 production, but inhibited IL-1ß, IL-6 and TNF-α production in 7-days' culture significantly. The use of HCl with the same pH value as PGA degradation products in culture did not produce the same inhibition effect as GA. The mouse model showed that the degradation of PGA scaffolds was accelerated in vivo in the first two weeks, mainly due to tissue ingrowth. The fast degradation of porous scaffolds triggered M1 macrophages into the implantation site, whilst the slow degradation of PGA fibers promoted the polarization of macrophages into M2 pro-healing phenotypes. This study provides a good foundation to study and design biodegradable biomaterials toward immunomodulation.


Subject(s)
Macrophage Activation/drug effects , Macrophages/metabolism , Polyglycolic Acid , Tissue Scaffolds/chemistry , Animals , Cytokines/metabolism , Macrophages/cytology , Mice , Polyglycolic Acid/chemistry , Polyglycolic Acid/pharmacokinetics , Polyglycolic Acid/pharmacology , RAW 264.7 Cells
15.
J Biomater Sci Polym Ed ; 30(9): 737-755, 2019.
Article in English | MEDLINE | ID: mdl-30935290

ABSTRACT

The current study, inspired by the immunosuppressive property of rapamycin (Rapa) and the benefit of microspheres both as drug delivery system and cell carriers, was designed to develop an efficient Rapa delivery system with tunable controllability to facilitate its local administration. A capillary-based two-phase microfluidic device was designed to prepare monodisperse poly(lactide-co-glycolide) (PLGA) microspheres to load Rapa (PLGA-Rapa-M). The physical and chemical properties of PLGA-Rapa-M were characterized, and the Rapa loading capacity and release profile were explored. Chondrocytes were chosen as a cell model to evaluate the adhesion and proliferation on these microspheres. Controllability over the microsphere properties was illustrated. The PLGA-Rapa-M is averagely 63.91 µm in size with a narrow size distribution and a CV of 2.44%. The encapsulation efficiency of Rapa within microspheres via the current microfluidics was around 98%, and Rapa loading could be easily varied with a maximum value of ∼20%. The PLGA-Rapa-M has a sustained Rapa release duration of ∼3 months. These microspheres could not only successfully be used for Rapa sustained release but also as cell carriers for cell therapy since they can support the attachment/proliferation of chondrocytes. Hence, improved therapeutic index could be expected by using the current developed Rapa-release system.


Subject(s)
Drug Carriers/chemistry , Lab-On-A-Chip Devices , Microspheres , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Sirolimus/chemistry , Animals , Cell Adhesion/drug effects , Cell Proliferation/drug effects , Chondrocytes/cytology , Chondrocytes/drug effects , Delayed-Action Preparations , Drug Carriers/pharmacology , Polylactic Acid-Polyglycolic Acid Copolymer/pharmacology , Rabbits
16.
Physiol Behav ; 199: 28-32, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30389478

ABSTRACT

Glutamate transporter GLT1 mediates glutamate uptake, and maintains glutamate homeostasis in the synaptic cleft. Previous studies suggest that blockade of glutamate uptake affects synaptic transmission and plasticity. However, the effect of GLT1 blockade on learning and memory still receives little attention. In the present study, we examined the effect of unilateral intracerebroventricular injection of dihydrokainic acid (DHK), a GLT-1 inhibitor, on novel object recognition (NOR) memory performance. The NOR task involved three sessions including habituation, sampling and test. In experiment 1, DHK injection 0.5 h pre-sampling impaired short-term NOR memory performance. In experiment 2, DHK injection 0.5 h pre-sampling impaired long-term NOR memory acquisition. In experiment 3, DHK injection immediately but not 6 h post-sampling impaired long-term NOR memory consolidation. In experiment 4, DHK injection 0.5 h pre-test impaired long-term NOR memory retrieval. Furthermore, DHK-induced memory performance impairment was not due to its effects on nonspecific responses such as locomotor activity and exploratory behavior. The current findings further extend previous studies on the effects of disruption of glutamate homeostasis on learning and memory.


Subject(s)
Amino Acid Transport System X-AG/antagonists & inhibitors , Kainic Acid/analogs & derivatives , Memory Consolidation/drug effects , Recognition, Psychology/drug effects , Animals , Kainic Acid/pharmacology , Male , Mice
17.
J Biomater Sci Polym Ed ; 29(5): 543-561, 2018 04.
Article in English | MEDLINE | ID: mdl-29316854

ABSTRACT

A highly stretchable hyaluronic acid (HA)/sodium alginate (SA) hydrogel was developed in this study based on an interpenetrating polymer network. HA/SA hydrogels were prepared by mixing two polysaccharides followed by covalent crosslinking via epoxy groups on HA molecules and ionic crosslinking via divalent ions on SA chains sequentially. The effect of HA/SA ratio on the pore size and distribution, swelling ratio, elongation and rheological properties as well as protein loading and release properties of HA/SA hydrogels was explored. Moreover, a surface modification method, layer-by-layer (LBL) assembly technique, was applied to modify the hydrogel to evaluate the hydrogel's tenability in varying biological performance. It was then shown that the hydrogels had the pore sizes ranging from 100 to 50 µm. With the increase in SA content of the resulting hydrogels, the pore size, swelling ratio, and storage modulus (G') and loss modulus (G″) of the hydrogel all decreased, whereas the in vitro bulk weight loss was fastened. Moreover, elongation at break (EB) value increased first, reached a peak value and then decreased, that is HA8/SA1 (HA:SA = 8:1) had the highest EB value of 417%. This hydrogel could retain 33.2% of the pre-loaded protein even after 72 h, which could be further attenuated when LBL was used to shell the hydrogel. The growth of fibroblasts on HA8/SA1 hydrogel gave preliminary assessment on its suitability as a cellular carrier, while the LBL modified HA8/SA1 hydrogel also favored the anchoring of keratinocytes, further enhancing its cell carrier role for tissue regeneration, especially skin engineering.


Subject(s)
Alginates/chemistry , Biocompatible Materials/chemistry , Hyaluronic Acid/chemistry , Hydrogels/chemistry , Mechanical Phenomena , Tissue Engineering/methods , Animals , Biocompatible Materials/pharmacology , Cattle , Cell Proliferation/drug effects , Child , Drug Liberation , Fibroblasts/cytology , Fibroblasts/drug effects , Humans , Materials Testing , Molecular Weight , Porosity , Rheology , Serum Albumin, Bovine/chemistry , Skin/cytology , Surface Properties
18.
ACS Biomater Sci Eng ; 4(2): 694-706, 2018 Feb 12.
Article in English | MEDLINE | ID: mdl-33418757

ABSTRACT

Polyglycolic acid (PGA) is a biocompatible and biodegradable polymer with high crystallinity. It is difficult to obtain PGA porous scaffolds with controllable morphology as well as outstanding mechanical properties without toxic solvents. The current study thus aimed to develop a novel melt-foaming strategy to prepare porous PGA scaffolds through the interaction between PGA molecules and supercritical carbon dioxide (scCO2). Before the design of foaming strategy, rheological properties of PGA were first studied by a Haake rheometer, whereas the effect of scCO2 on PGA was investigated by high-pressure differential scanning calorimetry (DSC). It was revealed that the elasticity and viscosity could be greatly improved by a temperature regulation operation to withstand the growth of bubbles at the initial depressurization. Meanwhile, the melting and crystallization temperatures of PGA were reduced because of the plasticization effect of scCO2. Through the dissolution of compressed CO2 into PGA melt and subsequent rapid depressurization at a relatively low temperature with high PGA melt strength, PGA scaffolds with porosity of 39-74%, average pore sizes ranging from 5 to 50 µm, and interconnectivity greater than 90% could be controllably fabricated. The effect of foaming temperature and pressure on morphology of PGA foams were then examined in detail. Special nanoscale morphology on the pore surface of resultant porous PGA foams was observed. These PGA foams also exhibited attractive compressive modulus of 68-116 MPa. The PGA foams with 74% porosity and average pore size of 38 µm, prepared at 208 °C and 20 MPa were then used as scaffolds for in vitro cellular evaluation. Fibroblasts seeded on the scaffold exhibited excellent spreading shape and good proliferation ability and in vivo implantation of PGA foams manifested as the notable tissue ingrowth and neovascularization process within the foams, ascertaining its potential applications for tissue engineering and regenerative medicine. This work presents a breakthrough to fabricate highly crystalline PGA into porous scaffolds instead of traditional fibrous ones.

19.
Soft Matter ; 12(7): 2192-9, 2016 Feb 21.
Article in English | MEDLINE | ID: mdl-26744299

ABSTRACT

In the present study, novel hydrogels with extremely high strength, reversible photoresponsive and excellent biocompatible properties were prepared. The functional hydrogels were synthesized from a well-defined poly (ethylene glycol) polymer with spiropyran groups at a given position (PEG-SP) via a Cu(i)-catalyst Azide-Alkyne Cycloaddition (CuAAC) reaction. The molecular structures of the sequential intermediates for PEG-SP hydrogel preparation were verified by (1)HNMR and FT-IR. The mechanical property, swelling ratio, compression strength, surface hydrophilicity, and biocompatibility of the resulting hydrogel were characterized. Since spiropyran is pivotal to the switch in hydrophilicity on the hydrogel surface, the swelling ratio of PEG-SP hydrogel under Vis irradiation has a major decrease (155%). Before and after UV light irradiation, the contact angle of the hydrogel has a change of 13.8°. The photoresponsive property of this hydrogel was thus demonstrated, and such a property was also shown to be reversible. The well-defined PEG-SP hydrogel can also sustain a compressive stress of 49.8 MPa without any macro- or micro-damage, indicating its outstanding mechanical performance. Furthermore, it possessed excellent biocompatibility as demonstrated by its performance in an in vivo porcine subcutaneous implantation environment. No inflammation was observed and it got along well with the adjacent tissue. The above features indicate that PEG-SP hydrogels are promising as an implantable matrix for potential applications in biomaterial.


Subject(s)
Benzopyrans/chemistry , Biocompatible Materials/chemistry , Hydrogels/chemistry , Implants, Experimental/veterinary , Indoles/chemistry , Nitro Compounds/chemistry , Polyethylene Glycols/chemistry , Alkynes/chemistry , Animals , Azides/chemistry , Biocompatible Materials/pharmacology , Biocompatible Materials/radiation effects , Catalysis , Cycloaddition Reaction , Hardness , Hydrogels/pharmacology , Hydrogels/radiation effects , Hydrophobic and Hydrophilic Interactions , Photochemical Processes , Skin/drug effects , Swine , Ultraviolet Rays
20.
Dent Traumatol ; 32(3): 225-30, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26511774

ABSTRACT

BACKGROUND/AIM: The influence of abutment tooth position and adhesive point dimension on rigidity of wire-composite splints, used in dental trauma, was evaluated in vitro. MATERIALS AND METHODS: A commercial artificial resin model was used. The central incisors served as injured teeth with increased mobility (degrees of loosening II tooth 21 and III tooth 11), whereas teeth 12/22 or teeth 13/23 served as non-injured teeth with physiological mobility. Horizontal and vertical tooth mobility before and after splinting was assessed, using a universal testing machine. Teeth were splinted with a wire-composite splint (0.8 mm). Four groups were assigned with respective abutment tooth position and adhesive point dimension: group 1 (13-11-21-23, 2 × 2 mm(2) ), group 2 (12-11-21-22, 2 × 2 mm(2) ), group 3 (12-11-21-22, 3 × 3 mm(2) ), group 4 (12-11-21-22, 4 × 4 mm(2) ). RESULTS: For each group, tooth mobility after splinting was significantly higher than the physiological tooth mobility (P < 0.05). For teeth 11 and 12, no significant differences between Group 1 and 2 (P > 0.05) were found in tooth mobility after splinting. Significant differences were found in horizontal tooth mobility after splinting of tooth 11 between Group 2 and 3, Group 2 and 4 and Group 3 and 4, respectively (P < 0.05), whereas significant difference was found in vertical dimension for tooth 11 only between Group 2 and 4 (P < 0.05). Significant differences were found in horizontal mobility of tooth 21 between Group 2 and 3, and Group 2 and 4 (P < 0.05). CONCLUSION: Splinting the injured teeth 11 and 21 and the bilateral uninjured abutment teeth (teeth 12/22 or teeth 13/23) with the stainless steel wire-composite splint (0.8 mm), can be considered flexible splinting. While mobility was still higher than in unaffected teeth, increase in size of the adhesive splinting point decreased horizontal but not vertical mobility in most cases.


Subject(s)
Orthodontic Wires , Periodontal Splints , Tooth Mobility , Composite Resins , Dental Cements , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...