Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 30(22): e202304114, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38311596

ABSTRACT

Lithium-selenium (Li-Se) batteries are promising energy storage devices. However, the long-term durability and high-rate performance of the Se cathode have been limited by significant volume expansion and the troublesome shuttle effect of polyselenides during repeated charging/discharging processes. To revolutionize these issues, we applied a top-down strategy through the in-situ trapping of amorphous Se within bubble-like carbon (BLC) frameworks, which can radically minimize the presence of surface-absorbed Se while enhancing Se loading capacity. This ingenious technique successfully encapsulates all Se species within carbon nanoshells, creating a distinct half-filled core-shell structure known as Se@void@BLC. This in-situ trapping approach ensures the efficient management of Se volume changes during repeated discharge and charge cycles. Moreover, an extraordinary Se loading capacity of up to 65.6 wt% is reached. Using the Se@void@BLC as cathode for Li-Se battery, we achieve a high initial Columbic efficiency of 84.2 %, a high reversible capacity of 585 mAh g-1, and an ultralow capacity decay of only 0.0037 % per cycle during 4000 cycles at 10 A g-1.

2.
Adv Sci (Weinh) ; : e2400364, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38251278

ABSTRACT

Sodium-ion batteries (SIBs) and sodium-ion capacitors (SICs) are promising candidates for cost-effective and large-scale energy storage devices. However, sluggish kinetics and low capacity of traditional anode materials inhibit their practical applications. Herein, a novel design featuring a layer-expanded MoS2 is presented that dual-reinforced by hollow N, P-codoped carbon as the inner supporter and surface groups abundant MXene as the outer supporter, resulting in a cross-linked robust composite (NPC@MoS2 /MXene). The hollow N, P-codoped carbon effectively prevents agglomeration of MoS2 layers and facilitates shorter distances between the electrolyte and electrode. The conductive MXene outer surface envelops the NPC@MoS2 units inside, creating interconnected channels that enable efficient charge transfer and diffusion, ensuring rapid kinetics and enhanced electrode utilization. It exhibits a high reversible capacity of 453 mAh g-1 , remarkable cycling stability, and exceptional rate capability with 54% capacity retention when the current density increases from 100 to 5000 mA g-1 toward SIBs. The kinetic mechanism studies reveal that the NPC@MoS2 /MXene demonstrates a pseudocapacitance dominated hybrid sodiation/desodiation process. Coupled with active carbon (AC), the NPC@MoS2 /MXene//AC SICs achieve both high energy density of 136 Wh kg-1 at 254 W kg-1 and high-power density of 5940 W kg-1 at 27 Wh g-1 , maintaining excellent stability.

SELECTION OF CITATIONS
SEARCH DETAIL
...