Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 13215, 2024 06 08.
Article in English | MEDLINE | ID: mdl-38851842

ABSTRACT

Using a curved carbon-fiber plate (CFP) in running shoes may offer notable performance benefit over flat plates, yet there is a lack of research exploring the influence of CFP geometry on internal foot loading during running. The objective of this study was to investigate the effects of CFP mechanical characteristics on forefoot biomechanics in terms of plantar pressure, bone stress distribution, and contact force transmission during a simulated impact peak moment in forefoot strike running. We employed a finite element model of the foot-shoe system, wherein various CFP configurations, including three stiffnesses (stiff, stiffer, and stiffest) and two shapes (flat plate (FCFP) and curved plate (CCFP)), were integrated into the shoe sole. Comparing the shoes with no CFP (NCFP) to those with CFP, we consistently observed a reduction in peak forefoot plantar pressure with increasing CFP stiffness. This decrease in pressure was even more notable in a CCFP demonstrating a further reduction in peak pressure ranging from 5.51 to 12.62%, compared to FCFP models. Both FCFP and CCFP designs had a negligible impact on reducing the maximum stress experienced by the 2nd and 3rd metatarsals. However, they greatly influenced the stress distribution in other metatarsal bones. These CFP designs seem to optimize the load transfer pathway, enabling a more uniform force transmission by mainly reducing contact force on the medial columns (the first three rays, measuring 0.333 times body weight for FCFP and 0.335 for CCFP in stiffest condition, compared to 0.373 in NCFP). We concluded that employing a curved CFP in running shoes could be more beneficial from an injury prevention perspective by inducing less peak pressure under the metatarsal heads while not worsening their stress state compared to flat plates.


Subject(s)
Running , Shoes , Running/physiology , Humans , Biomechanical Phenomena , Pressure , Carbon Fiber/chemistry , Forefoot, Human/physiology , Finite Element Analysis , Stress, Mechanical , Weight-Bearing/physiology , Carbon/chemistry , Equipment Design , Foot/physiology
2.
Sci Rep ; 14(1): 1826, 2024 01 21.
Article in English | MEDLINE | ID: mdl-38246957

ABSTRACT

Despite runners frequently suffering from dermatologic issues during long distance running, there is no compelling evidence quantitatively investigating their underlying injury mechanism. This study aimed to determine the foot morphology and temperature changes during long distance running and reveal the effect of these alterations on the injury risk of bruised toenail by measuring the subjective-perceived hallux comfort and gap length between the hallux and toebox of the shoe. Ten recreational runners participated in the experimental tests before (baseline), immediately after 5 and 10 km of treadmill running (12 km/h), in which the foot morphology was measured by a 3D foot scanner, the foot temperature was detected by an infrared camera, the perceived comfort was recorded by a visual analogue scale, and the gap length in the sagittal plane was captured by a high-speed camera. Ball width became narrower (106.39 ± 6.55 mm) and arch height (12.20 ± 2.34 mm) was reduced greatly after the 10 km run (p < 0.05). Foot temperature increased significantly after 5 and 10 km of running, and the temperature of dorsal hallux (35.12 ± 1.46 °C), dorsal metatarsal (35.92 ± 1.59 °C), and medial plantar metatarsal (37.26 ± 1.34 °C) regions continued to increase greatly from 5 to 10 km of running (p < 0.05). Regarding hallux comfort, the perceived scores significantly reduced after 5 and 10 km of running (2.10 ± 0.99, p < 0.05). In addition, during one running gait cycle, there was a significant increase in gap length at initial contact (39.56 ± 6.45 mm, p < 0.05) for a 10 km run, followed by a notable decrease upon reaching midstance (29.28 ± 6.81 mm, p < 0.05). It is concluded that the reduced ball width and arch height while increased foot temperature during long-distance running would exacerbate foot-shoe interaction, potentially responsible for bruised toenail injuries.


Subject(s)
Contusions , Running , Humans , Nails , Temperature , Foot , Lower Extremity
3.
J Biomech ; 162: 111865, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37976687

ABSTRACT

Individuals with chronic ankle instability (CAI) suffer from the resulting sequela of repetitive lateral ankle sprains (LAS), whilst copers appear to cope with initial LAS successfully. Therefore, the aim of this study was to explore the intra-foot biomechanical differences among CAI, copers, and healthy individuals during dynamic tasks. Twenty-two participants per group were included and required to perform cutting and different landing tasks (DL: drop landing; FL: forward jump followed a landing). A five-segment foot model with 8 degrees of freedom was used to explore the intra-foot movement among these three groups. Smaller dorsiflexion angles were found in copers (DL tasks and prelanding task) and CAI (DL and FL task) compared to healthy participants. Copers presented a more eversion position compared to others during these dynamic tasks. During the descending phase of DL task, greater dorsiflexion angles in the metatarsophalangeal joint were found in copers compared to the control group. Joint moment difference was only found in the subtalar joint during the descending phase of FL task, presenting more inversion moments in copers compared to healthy participants. Copers rely on more eversion positioning to prevent over-inversion of the subtalar joint compared to CAI. Further, the foot became more unstable when conducting sport-related movements, suggesting that foot stability seems to be sensitive to the task types. These findings may help in designing and implementing interventions to restore functions of the ankle joint in CAI individuals.


Subject(s)
Ankle Injuries , Joint Instability , Humans , Ankle , Biomechanical Phenomena , Ankle Joint , Foot , Movement , Chronic Disease
4.
Article in English | MEDLINE | ID: mdl-37817665

ABSTRACT

Metatarsalgia occurring in individuals with pes cavus is typically associated with abnormal loading patterns in the forefoot resulting from structural alterations. Simultaneously, the frequent overstress of the plantar fascia (PF) caused by the persistence of this foot deformity may further exacerbate the chronic pain induced by metatarsal overload. We aimed to investigate and quantify the effects of PF stiffness on the internal biomechanics of pes cavus using a computational modelling approach. A patient-specific finite element model of the foot-ankle complex using the actual three-dimensional geometry of idiopathic pes cavus bones and soft tissues was reconstructed. A sensitivity study was conducted to evaluate the effects of varying elastic modulus (0-700 MPa) of the PF on the metatarsal stress distribution, and force transmission through the metatarsophalangeal (MTP) and tarsometatarsal (TMT) joints in the pes cavus. The results indicated that variations in PF stiffness led to stress redistribution in the metatarsal region. Peak stress gradually reduced with decreasing stiffness until the PF was released, eventually resulting in a reduction of 22.39% compared to the reference value of 350 MPa. Furthermore, adjusting the PF stiffness to twice the reference value (700 MPa) increased the contact forces through the TMT and MTP joints by up to 23% and 116%, respectively. The reduction of PF stiffness alleviated focal metatarsal loading, and therefore, surgical fascia release can be considered to alleviate metatarsalgia in patients with pes cavus.

5.
Gait Posture ; 106: 11-17, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37611480

ABSTRACT

BACKGROUND: Understanding detailed foot morphology as well as regional plantar forces could provide insight into foot function and provide recommendation for footwear design for chronic ankle instability (CAI) people. RESEARCH QUESTION: This study presented 3-dimensional statistical shape models of feet from three different populations including CAI, copers and healthy individuals, with regional plantar forces also acquired. METHODS: Sixty-six males (22 participants per group) were included in this study to capture 3-dimensional foot shapes under a standing condition and regional plantar forces during a cutting maneuver. Principal component analysis was performed to generate a mean foot shape of each group as well as modes of variations. A generalized procrustes analysis was used to achieve rapid registration of mean shapes. Besides, regional plantar forces and contact duration among these three populations were compared. RESULTS: For 3-dimensional foot shapes, although no significant differences of the average distance between each mode and mean shape were found among three populations, there were subtle variations in mean shapes. The CAI population presented a more bulging of the lateral malleolus; copers were characterized by the flexion of the lesser toes, a more bulging of the medial foot in the sagittal plane; and healthy individuals showed a greater heel width and a more bulging of the heel in the sagittal plane. In terms of plantar forces, healthy individuals had significantly greater summated plantar forces and greater plantar forces in the lateral heel area during the early contact phase compared to copers and CAI participants. SIGNIFICANCE: Overall, this study suggested that repetitive ankle sprains may lead to the bulging of the lateral malleolus. Further, CAI and copers seem to stabilize the ankle joint by medially shifting the center of pressure compared to healthy individuals under the static and less challenging dynamic conditions.

6.
Healthcare (Basel) ; 11(15)2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37570418

ABSTRACT

To compare the efficacy of different recovery strategies (sitting; cold water immersion, CWI; vibration foam rolling, VFR) on the lower extremities of amateur basketball players after the simulated load of a basketball game, we assessed the power, agility, and dynamic balance before and after interventions. Ten amateur basketball players alternately underwent 12 min of sitting, 12 min of CWI at 5 °C, and 12 min of VFR. The power, agility, and dynamic balance were measured immediately post-warm-up, immediately post-game, immediately post-intervention, 1 h after interventions, and 24 h after interventions. To simulate the load of a basketball game, specific movements were designed and implemented. Jump height was measured using a Kistler force plate. Reaction time and dynamic balance score were assessed using the Pavigym agility response system and the Y balance test, respectively. The data were analyzed with a two-way repeated measures analysis of variance (ANOVA). The results showed that the vertical jump height significantly decreased after the CWI intervention compared to the CON and VFR groups (p < 0.001). At 1 h after the intervention, the vertical jump height in the CON group showed delayed recovery compared to the CWI and VFR groups (p = 0.007; p < 0.001). At 24 h after the intervention, the vertical jump height in the CWI group further increased and was significantly different from the CON and VFR groups (p < 0.001; p = 0.005). Additionally, reaction times significantly increased immediately after the CWI intervention (p = 0.004) but showed further recovery at 24 h compared to the CON group (p < 0.001). The dynamic balance score significantly rebounded after the CWI intervention compared to the CON group (p = 0.021), with further improvement at 24 h (p < 0.001). CWI initially showed negative effects, but over time, its recovery effect was superior and more long-lasting. VFR had the best immediate effect on lower limb recovery after the game.

7.
Front Physiol ; 14: 1034132, 2023.
Article in English | MEDLINE | ID: mdl-37260595

ABSTRACT

Introduction: The changes in physical shape and center of mass during pregnancy may increase the risk of falls. However, there were few studies on the effects of maternal muscles on gait characteristics and no studies have attempted to investigate changes in induced acceleration during pregnancy. Further research in this area may help to reveal the causes of gait changes in women during pregnancy and provide ideas for the design of footwear and clothing for pregnant women. The purpose of this study is to compare gait characteristics and induced accelerations between non-pregnant and pregnant women using OpenSim musculoskeletal modeling techniques, and to analyze their impact on pregnancy gait. Methods: Forty healthy participants participated in this study, including 20 healthy non-pregnant and 20 pregnant women (32.25 ± 5.36 weeks). The portable gait analyzer was used to collect participants' conventional gait parameters. The adjusted OpenSim personalized musculoskeletal model analyzed the participants' kinematics, kinetics, and induced acceleration. Independent sample T-test and one-dimensional parameter statistical mapping analysis were used to compare the differences in gait characteristics between pregnant and non-pregnant women. Results: Compared to the control group, pregnancy had a 0.34 m reduction in mean walking speed (p < 0.01), a decrease in mean stride length of 0.19 m (p < 0.01), a decrease in mean stride frequency of 19.06 step/min (p < 0.01), a decrease in mean thigh acceleration of 0.14 m/s2 (p < 0.01), a decrease in mean swing work of 0.23 g (p < 0.01), and a decrease in mean leg falling strength of 0.84 g (p < 0.01). Induced acceleration analysis showed that pregnancy muscle-induced acceleration decreased in late pregnancy (p < 0.01), and the contribution of the gastrocnemius muscle to the hip and joint increased (p < 0.01). Discussion: Compared with non-pregnant women, the gait characteristics, movement amplitude, and joint moment of pregnant women changed significantly. This study observed for the first time that the pregnant women relied more on gluteus than quadriceps to extend their knee joints during walking compared with the control group. This change may be due to an adaptive change in body shape and mass during pregnancy.

8.
J Biomech ; 153: 111597, 2023 05.
Article in English | MEDLINE | ID: mdl-37126883

ABSTRACT

A carbon-fiber plate (CFP) embedded into running shoes is a commonly applied method to improve running economy, but little is known in regard the effects of CFP design features on internal foot mechanics. This study aimed to explore how systematic changes in CFP geometrical variations (i.e., thickness and location) can alter plantar pressure and strain under the forefoot as well as metatarsal stress state through computational simulations. A foot-shoe finite element (FE) model was built and different CFP features including three thicknesses (1 mm, 2 mm, and 3 mm) and three placements (high-loaded (just below the insole), mid-loaded (in between the midsole), and low-loaded (just above the outsole)) were further modulated within the shoe sole. Simulations were conducted at the impact peak instant during forefoot strike running. Compared with the no-CFP shoe, peak plantar pressure and compressive strain under the forefoot consistently decreased when the CFP thickness increased, and the low-loaded conditions were found more effective (peak pressure decreased up to 31.91% and compressive strain decreased up to 18.61%). In terms of metatarsal stress, CFP designs resulted in varied effects and were dependent on their locations. Specifically, high-loaded CFP led to relatively higher peak metatarsal stress without the reduction trend as thickness increased (peak stress increased up to 12.91%), while low-loaded conditions showed a gradual reduction in peak stress, decreasing by 0.74%. Therefore, a low-loaded thicker CFP should be considered to achieve the pressure-relief effects of running shoes without the expense of increased metatarsal stress.


Subject(s)
Metatarsal Bones , Running , Shoes , Carbon Fiber , Foot
9.
J Biomech Eng ; 145(7)2023 07 01.
Article in English | MEDLINE | ID: mdl-37043259

ABSTRACT

Excessive foot arch deformation is associated with plantar tissue overload and ligamentous injury pathologies. Finite element (FE) analysis, as an effective tool for modeling and simulation, has been utilized clinically for providing insights into arch biomechanics. This systematic scoping review aimed to summarize the current state of computational modeling techniques utilized in arch biomechanics from 2000 onwards and outline the main challenges confronting the further development of accurate models in clinical conditions. English-language searches of the electronic databases were conducted in the Web of Science, PubMed, and Scopus until July 2022. Articles that investigated arch deformation mechanisms by FE modeling were included. The methodological quality was assessed utilizing the Methodological Quality Assessment of Subject-Specific Finite Element Analysis Used in Computational Orthopedics (MQSSFE). Seventeen articles were identified in this systematic scoping review, mostly focusing on constructing models for specific pathological conditions, such as progressive collapsing foot deformity, valgus foot, and posterior tibial tendon dysfunction. However, given the complexity of the arch problem, geometrical simplifications regarding the balance between accurate detail and computational cost and assumptions made in defining modeling parameters (material properties and loading and boundary conditions) may bring challenges to the accuracy and generalizability of models applied to clinical settings. Overall, advances in computational modeling techniques have contributed to reliable foot deformation simulation and analysis in modern personalized medicine.


Subject(s)
Fascia , Foot , Finite Element Analysis , Stress, Mechanical , Foot/pathology , Ligaments , Biomechanical Phenomena
10.
Front Bioeng Biotechnol ; 11: 1013100, 2023.
Article in English | MEDLINE | ID: mdl-36798592

ABSTRACT

Background: Local muscle fatigue may have an adverse effect on the biomechanics of the lunge movement and athletic performance. This study analyzed the biomechanical indicators of the forward lunge in badminton players before and after fatigue of the ankle dorsiflexors. Methods: Using the isometric muscular strength testing system, 15 badminton players underwent an ankle dorsiflexor fatigue test. Before and after the fatigue experiment, five lunges were done in both the forehand forward (FH) and backhand forward (BH) directions, five in each direction. A Vicon motion capture system and an AMTI force measuring station were used to record lower limb kinematic and ground reaction force (GRF). Pre-fatigue and post-fatigue variability were determined using paired-samples t-tests, Wilcoxon signed rank test, and Statistical Non-parametric Mapping (SNPM). Result: The results showed that after fatigue, the peak angle of ankle dorsiflexion was significantly reduced (p = 0.034), the range of motion (ROM) of the ankle sagittal plane (p = 0.000) and peak angle of ankle plantarflexion (p = 0.001) was significantly increased after forehand landing. After fatigue, ankle inversion was significantly increased after forehand and backhand landings (FH: p = 0.033; BH: p = 0.015). After fatigue, peak knee flexion angles increased significantly (FH: Max: p = 0.000, Min: p = 0.000; BH: Max: p = 0.017, Min: p = 0.037) during forehand and backhand landings and ROM in knee flexion and extension increased (p = 0.009) during forehand landings. Knee inversion range of motion was significantly increased after fatigue (p = 0.024) during forehand landings. Peak hip flexion angle (p = 0.000) and range of motion (p = 0.000) were significantly reduced in forehand landings after fatigue. The mean loading rate (p = 0.005) and the maximum loading rate (p = 0.001) increased significantly during backhand landings after fatigue. Post-fatigue, the center of pressure (COP) frontal offset increased significantly (FH: p = 0.000; BH: p = 0.000) in the forehand and backhand landings. Conclusion: These results indicate that when the ankle dorsiflexors are fatigued, the performance of the forehand is significantly negatively affected, and the impact force of the backhand is greater.

11.
Bioengineering (Basel) ; 9(11)2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36421104

ABSTRACT

This study compares foot-ankle temporal kinematics characteristics during planned and unplanned gait termination (PGT and UGT) in subjects with different arch stiffnesses (ASs) based on the statistical nonparametric mapping (SnPM) method. By measuring three-dimensional arch morphological parameters under different loading conditions, 28 healthy male subjects were classified and participated in gait termination (GT) tests to collect metatarsophalangeal (MTP) and ankle-joint kinematics data. The two-way repeated-measures ANOVA using SnPM was employed to assess the impacts of AS on foot-ankle kinematics during PGT and UGT. Our results show that joint angles (MTP and ankle joints) were altered owing to AS and GT factors. The flexible arches hahadve periods of significantly greater MTP and ankle joint angles than those of stiff arches during the stance phase of GT, whereas subjects exhibited significantly smaller ankle and MTP joint angles during UGT. These results add additional insights into the morphological arch biomechanical function, and the comprehensive compensatory adjustment of lower-limb joints during gait stopping caused by unplanned stimulation.

12.
Bioengineering (Basel) ; 9(10)2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36290465

ABSTRACT

Although various sports footwear demonstrated marked changes in running biomechanical variables, few studies have yielded definitive findings on the underlying mechanisms of shoe constructions affecting running-related performance and injuries. Therefore, this study focused on examining the effect of basic shoe constructions on running biomechanics and assessing the current state of sports shoe production in terms of injury and efficiency. Relevant literature was searched on five databases using Boolean logic operation and then screened by eligibility criteria. A total of 1260 related articles were retrieved in this review, and 41 articles that met the requirements were finally included, mainly covering the influence of midsole, longitudinal bending stiffness, heel-toe drop, shoe mass, heel flare, and heel stabilizer on running-related performance and injuries. The results of this review study were: (1) The functional positioning of running shoe design and the target groups tend to influence running performance and injury risk; (2) Thickness of 15-20 mm, hardness of Asker C50-C55 of the midsole, the design of the medial or lateral heel flares of 15°, the curved carbon plate, and the 3D printed heel cup may be beneficial to optimize performance and reduce running-related injuries; (3) The update of research and development concepts in sports biomechanics may further contribute to the development of running shoes; (4) Footwear design and optimization should also consider the influences of runners' strike patterns.

13.
Bioengineering (Basel) ; 9(10)2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36290521

ABSTRACT

Nowadays, footwear serves an essential role in improving athletic performance and decreasing the risk of unexpected injuries in sports games. Finite element (FE) modeling is a powerful tool to reveal the biomechanical interactions between foot and footwear, and establishing a coupled foot-shoe model is the prerequisite. The purpose of this pilot study was to develop and validate a 3D FE coupled model of the foot and sports shoe complex during balanced standing. All major foot and shoe structures were constructed based on the participant's medical CT images, and 3D gait analysis was conducted to define the loading and boundary conditions. Sensitivity analysis was applied to determine the optimum material property for shoe sole. Both the plantar and shoe sole areas were further divided into four regions for model validation, and the Bland-Altman method was used for consistency analysis between methods. The simulated peak plantar and sole pressure distribution showed good consistency with experimental pressure data, and the prediction errors were all less than 10% during balanced standing with only two exceptions (medial and lateral forefoot regions). Meanwhile, the Bland-Altman analysis demonstrated a good agreement between the two approaches. The sensitivity analysis suggested that shoe sole with Young's modulus of 2.739 MPa presented the greatest consistency with the measured data in our scenario. The established model could be used for investing the complex biomechanical interactions between the foot and sports shoe and optimizing footwear design, after it has been fully validated in the subsequent works under different conditions.

14.
Appl Bionics Biomech ; 2022: 4047845, 2022.
Article in English | MEDLINE | ID: mdl-35898600

ABSTRACT

Augmented reality- (AR-) based interventions have shown potential benefits for lower limb rehabilitation. However, current literature has not revealed these benefits as a whole. The main purposes of this systematic review were to determine the efficacy of AR-based interventions on lower limb recovery of the larger population based on the current process that has been made in this regard. Relevant studies were retrieved from five electronic databases (Web of Science, PubMed, ScienceDirect, Scopus, and Cochrane Library) using "augmented reality" OR "AR" AND "lower limb" OR "lower extremity" AND "intervention" OR "treatment". Sixteen studies that met the eligibility criteria were included in this review, and they were further grouped into three categories based on the participant types. Seven studies focused on the elderly adults, six on the stroke patients, and the last three on Parkinson patients. Based on the findings of these trials, the significant effects of AR-based interventions on lower limb rehabilitation (i.e., balance, gait, muscle, physical performance, and fall efficacy) have been initially confirmed. Favorable results were achieved at least the same as the interventions without AR except for the turning and timing in the freezing of gait of Parkinson patients. However, given the infancy of this technology in clinical practices, more robust trials with larger sample sizes and greater homogeneity in terms of devices and treatment settings are warranted for further verification.

15.
Biomed Res Int ; 2022: 4043426, 2022.
Article in English | MEDLINE | ID: mdl-35832852

ABSTRACT

The efficacy of the variance equality test in steady-state gait analysis is well documented; however, temporal information on where differences in variability occur during gait subtasks, especially during gait termination caused by unexpected stimulation, is poorly understood. Therefore, the purpose of the current study was to further verify the efficacy of the waveform-level variance equality test in gait subtasks by comparing temporal kinematical variability between planned gait termination (PGT) and unplanned gait termination (UGT) caused by unexpected stimulation. Thirty-two asymptomatic male subjects were recruited to participate in the study. A Vicon motion capture system was utilized to measure lower extremity kinematics during gait termination tasks with and without unexpected stimulation conditions. The F-statistic for each interval of the temporal kinematic waveform was compared to the critical value using a variance equality test to identify significant differences in the waveform. Comparative tests between two types of gait terminations found that subjects may exhibit greater kinematics variance in most lower limb joints during UGT caused by unexpected stimulation (especially at stimulus delay and reaction phases). Significant greater variances during PGT were exhibited only in the MPJ sagittal and frontal planes at the early stimulus delay phase (4-15% and 1-15%). This recorded dataset of temporal kinematic changes caused by unexpected stimuli during gait termination is essential for interpreting lower limb biomechanical function and injury prediction in relation to UGT. Given the complexity of the gait termination task, which involves both internal and external variability, the variance equality test can be used as a valuable method to compare temporal differences in the variability of biomechanical variables.


Subject(s)
Gait Analysis , Gait , Biomechanical Phenomena/physiology , Gait/physiology , Gait Analysis/methods , Humans , Lower Extremity/physiology , Male , Motion
16.
Diagnostics (Basel) ; 12(6)2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35741281

ABSTRACT

The aim of this study was to assess the stiffness of each lower limb joint in healthy persons walking at varying speeds when fatigued. The study included 24 subjects (all male; age: 28.16 ± 7.10 years; height: 1.75 ± 0.04 m; weight: 70.62 ± 4.70 kg). A Vicon three-dimensional analysis system and a force plate were used to collect lower extremity kinematic and kinetic data from the participants before and after walking training under various walking situations. Least-squares linear regression equations were utilized to evaluate joint stiffness during single-leg support. Three velocities significantly affected the stiffness of the knee and hip joint (p < 0.001), with a positive correlation. However, ankle joint stiffness was significantly lower only at maximum speed (p < 0.001). Hip stiffness was significantly higher after walking training than that before training (p < 0.001). In contrast, knee stiffness after training was significantly lower than pre-training stiffness in the same walking condition (p < 0.001). Ankle stiffness differed only at maximum speed, and it was significantly higher than pre-training stiffness (p < 0.001). Walking fatigue appeared to change the mechanical properties of the joint. Remarkably, at the maximum walking velocity in exhaustion, when the load on the hip joint was significantly increased, the knee joint's stiffness decreased, possibly leading to joint instability that results in exercise injury.

17.
Children (Basel) ; 9(5)2022 May 13.
Article in English | MEDLINE | ID: mdl-35626898

ABSTRACT

As a simple and beneficial way of exercise, rope skipping is favored by the majority of teenagers, but incorrect rope skipping may lead to the risk of injury. In this study, 16 male adolescent subjects were tested for bounced jump skipping and alternating jump rope skipping. The kinematic data of the hip, knee, ankle and metatarsophalangeal joint of lower extremities and the kinetics data of lower extremity touching the ground during rope skipping were collected, respectively. Moreover, the electromyography (EMG) data of multiple muscles of the lower extremity were collected by Delsys wireless surface EMG tester. Results revealed that bounced jump (BJ) depicted a significantly smaller vertical ground reaction force (VGRF) than alternate jump (AJ) during the 11−82% of the ground-contact stage (p < 0.001), and the peak ground reaction force and average loading rate were significantly smaller than AJ. From the kinematic perspective, in the sagittal plane, when using BJ, the flexion angle of the hip joint was comparably larger at 12−76% of the ground-contact stage (p < 0.01) and the flexion angle of the knee joint was significantly larger at 13−72% of the ground-contact stage (p < 0.001). When using two rope skipping methods, the minimum dorsal extension angle of the metatarsophalangeal joint was more than 25°, and the maximum was even higher than 50°. In the frontal plane, when using AJ, the valgus angle of the knee joint was significantly larger during the whole ground-contact stage (p < 0.001), and the adduction angle of the metatarsophalangeal joint (MPJ) was significantly larger at 0−97% of the ground-contact stage (p = 0.001). EMG data showed that the standardized value of root mean square amplitude of the tibialis anterior and gastrocnemius lateral head of BJ was significantly higher than AJ. At the same time, that of semitendinosus and iliopsoas muscle was significantly lower. According to the above results, compared with AJ, teenagers receive less GRF and have a better landing buffer strategy to reduce load, and have less risk of injury during BJ. In addition, in BJ rope skipping, the lower limbs are more inclined to the calf muscle group force, while AJ is more inclined to the thigh muscle group force. We also found that in using two ways of rope skipping, the extreme metatarsophalangeal joint back extension angle could be a potential risk of injury for rope skipping.

18.
Proc Inst Mech Eng H ; 236(5): 676-685, 2022 May.
Article in English | MEDLINE | ID: mdl-35311405

ABSTRACT

Achilles tendon rupture (ATR) incidence has increased among badminton players in recent years. The foot internal stress was hard to obtain through experimental testing. The purpose of the current research is to develop a methodology that could improve the finite element model derived foot internal stress prediction for ATR clinical and rehabilitation applications. A subject-specific musculoskeletal model was combined with a 3D finite element model to predict the metatarsal stress. The 80% point during the push-off phase of walking was selected for the comparing between injured and uninjured sides. The surgical repaired Achilles tendon (AT) after 12 months was elongated by 5.5% than the uninjured tendon. At 80% point of stance phase, the ankle plantarflexion angle and AT force decreased by 39.6% and 21.9% on the injured side, respectively. The foot inversion degree increased by 22.9% and was accompanied by the redistribution of metatarsals von Mises stress. The stresses on the fourth and fifth metatarsals were increased by 59.5% and 85.9% on the injured side. The workflow is available to assess musculoskeletal disorders and obtain foot internal stress after ATR. The decreased ankle plantar flexor force may be affected by triceps surae muscle atrophy and weakened force transmission ability of elongated AT. The increased von Mises stress on fourth and fifth metatarsals accompanied by higher foot inversion may increase the ankle lateral sprain injury risk.


Subject(s)
Achilles Tendon , Ankle Injuries , Metatarsal Bones , Achilles Tendon/injuries , Biomechanical Phenomena , Finite Element Analysis , Gait/physiology , Humans , Rupture/surgery , Workflow
19.
J Clin Med ; 10(23)2021 Nov 26.
Article in English | MEDLINE | ID: mdl-34884238

ABSTRACT

OBJECTIVE: The efficacy of arch orthoses in posture adjustment and joint coordination improvement during steady-state gait is well documented; however, the biomechanical changes of gait sub-tasks caused by arch support (AS), especially during gait termination, are poorly understood. Hence, this study aimed to investigate how the acute arch-supporting intervention affects foot-ankle coordination and coordination variability (CV) in individuals with flatfoot during unplanned gait termination (UGT). METHODS: Twenty-five male patients with flatfoot were selected as subjects participated in this AS manipulation study. A motion capture system was used for the collection of the metatarsophalangeal joint (MPJ) and ankle kinematics during UGT. MPJ-Ankle coordination and CV were quantified using an optimized vector coding technique during the three sub-phases of UGT. A paired-sample t-test from the one-dimensional statistical parametric mapping of one-dimensional was applied to examine the data significance. RESULTS: Significant differences for the joint kinematics between non-arch-support (NAS) and AS were exhibited only in the MPJ transverse plane during the middle and later periods of UGT (p = 0.04-0.026). Frontal plane MPJ-ankle coordination under AS during stimulus delay significantly decreased from 177.16 ± 27.41° to 157.75 ± 32.54° compared with under NAS (p = 0.026); however, the coordination pattern had not changed. Moreover, no significant difference was found in the coupling angle variability between NAS and AS in three planes during sub-phases of UGT (all p > 0.5). CONCLUSIONS: The detailed intrinsic characteristic of AS induced acute changes in lower extremity segment coordination in patients with mild flatfoot has been recorded. This dataset on foot-ankle coordination characteristics during UGT is essential for explaining foot function and injury prediction concerning AS manipulation. Further studies are expected to reflect lower limb inter-joint coordination during gait termination through the long-term effects of AS orthoses.

20.
Front Hum Neurosci ; 15: 620573, 2021.
Article in English | MEDLINE | ID: mdl-34539362

ABSTRACT

Repetitive transcranial magnetic stimulation (rTMS) is fundamental in inducing neuroplastic changes and promoting brain function restoration. Nevertheless, evidence based on the systematic assessment of the implication of rTMS in stroke patients is inadequate. This study aimed to evaluate the value of rTMS in the treatment of lower-limb motor dysfunction in stroke patients via gait characteristics. The electronic literature search was performed in ScienceDirect, Google Scholar, and PubMed databases using "repetitive transcranial magnetic stimulation," "gait," and "stroke" between 2000 and 2020. By screening all the identified studies, a total of 10 studies covering 257 stroke patients were included by matching the inclusion criteria, involving both rTMS with high (≥5 Hz) and low frequency (<5 Hz). Despite the limited study number and relatively high risk of bias, the results of this review primarily confirmed the enhancing effects of rTMS on the lower-limb motor ability (e.g., gait and balance) of stroke patients. In addition, 15- to 20-min course of rTMS for 2 to 3 weeks was found to be the most common setting, and 1 Hz and 10 Hz were the most commonly used low and high frequencies, respectively. These results might have significant clinical applications for patients with weakened lower-limb mobility after a stroke. Nevertheless, more rigorous studies in this field are much warranted. Systematic Review Registration:https://inplasy.com/, identifier INPLASY202180079.

SELECTION OF CITATIONS
SEARCH DETAIL
...