Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Neurosci ; 26(6): 983-996, 2023 06.
Article in English | MEDLINE | ID: mdl-37248338

ABSTRACT

Despite the strong evidence linking the transactive response DNA-binding protein 43 (TDP-43) aggregation to the pathogenesis of frontotemporal lobar degeneration with TDP-43, amyotrophic lateral sclerosis and several neurodegenerative diseases, our knowledge of the sequence and structural determinants of its aggregation and neurotoxicity remains incomplete. Herein, we present a new method for producing recombinant full-length TDP-43 filaments that exhibit sequence and morphological features similar to those of brain-derived TDP-43 filaments. We show that TDP-43 filaments contain a ß-sheet-rich helical amyloid core that is fully buried by the flanking structured domains of the protein. We demonstrate that the proteolytic cleavage of TDP-43 filaments and exposure of this amyloid core are necessary for propagating TDP-43 pathology and enhancing the seeding of brain-derived TDP-43 aggregates. Only TDP-43 filaments with exposed amyloid core efficiently seeded the aggregation of endogenous TDP-43 in cells. These findings suggest that inhibiting the enzymes mediating cleavage of TDP-43 aggregates represents a viable disease-modifying strategy to slow the progression of amyotrophic lateral sclerosis and other TDP-43 proteinopathies.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Frontotemporal Lobar Degeneration , TDP-43 Proteinopathies , Humans , Amyotrophic Lateral Sclerosis/metabolism , TDP-43 Proteinopathies/pathology , Frontotemporal Lobar Degeneration/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism
2.
Nanoscale ; 13(44): 18684-18694, 2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34738613

ABSTRACT

Viral infections caused by bacteriophages, i.e., viruses that kill bacteria are one of the most dangerous and common threats for bacteria-based bioreactors. More than 70% of biotechnology companies have admitted to encountering this problem. Despite phage infections being such a dangerous and widespread risk, there are no effective methods to avoid them to date. Herein, we present a novel technology based on nanoparticles that irreversibly deactivates bacteriophages and is safe for bacteria. Our method allows for the unsupervised protection of bacterial processes in the biotechnology industry. Gold nanoparticles coated with a mixture of negatively charged 11-mercapto 1-undecanesulfonic acid (MUS) and hydrophobic 1-octanethiol (OT) ligands are effective at deactivating various types of Escherichia coli-selective phages: T1, T4, and T7. The nanoparticles can lower the titer of phages up to 2 and 5 logs in 6 and 24 h at 50 °C, respectively. A comparative analysis of nanoparticles with different ligand shells illustrates the importance of the combination of negatively charged and hydrophobic ligands that is the key to achieving a good inhibitory concentration (EC50 ≤ 1 µg mL-1) for all tested phages. We show that the nanoparticles are harmless for the commonly used bacteria in industry Escherichia coli and are effective under conditions simulating the environment of bioreactors.


Subject(s)
Bacteriophages , Metal Nanoparticles , Bacteria , Escherichia coli , Gold
3.
J Mol Biol ; 433(21): 167222, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34492254

ABSTRACT

Converging evidence points to the N-terminal domain comprising the first 17 amino acids of the Huntingtin protein (Nt17) as a key regulator of its aggregation, cellular properties and toxicity. In this study, we further investigated the interplay between Nt17 and the polyQ domain repeat length in regulating the aggregation and inclusion formation of exon 1 of the Huntingtin protein (Httex1). In addition, we investigated the effect of removing Nt17 or modulating its local structure on the membrane interactions, neuronal uptake, and toxicity of monomeric or fibrillar Httex1. Our results show that the polyQ and Nt17 domains synergistically modulate the aggregation propensity of Httex1 and that the Nt17 domain plays important roles in shaping the surface properties of mutant Httex1 fibrils and regulating their poly-Q-dependent growth, lateral association and neuronal uptake. Removal of Nt17 or disruption of its transient helical conformations slowed the aggregation of monomeric Httex1 in vitro, reduced inclusion formation in cells, enhanced the neuronal uptake and nuclear accumulation of monomeric Httex1 proteins, and was sufficient to prevent cell death induced by Httex1 72Q overexpression. Finally, we demonstrate that the uptake of Httex1 fibrils into primary neurons and the resulting toxicity are strongly influenced by mutations and phosphorylation events that influence the local helical propensity of Nt17. Altogether, our results demonstrate that the Nt17 domain serves as one of the key master regulators of Htt aggregation, internalization, and toxicity and represents an attractive target for inhibiting Htt aggregate formation, inclusion formation, and neuronal toxicity.


Subject(s)
Exons , Huntingtin Protein/chemistry , Mutation , Neurons/metabolism , Protein Aggregates , Animals , Cloning, Molecular , Corpus Striatum/cytology , Corpus Striatum/metabolism , Cryoelectron Microscopy , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , HEK293 Cells , Humans , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Microscopy, Atomic Force , Neurons/cytology , Phosphorylation , Primary Cell Culture , Protein Conformation, alpha-Helical , Protein Engineering/methods , Protein Folding , Rats , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
4.
Proc Natl Acad Sci U S A ; 117(12): 6866-6874, 2020 03 24.
Article in English | MEDLINE | ID: mdl-32161130

ABSTRACT

Increasing evidence suggests that amyloid polymorphism gives rise to different strains of amyloids with distinct toxicities and pathology-spreading properties. Validating this hypothesis is challenging due to a lack of tools and methods that allow for the direct characterization of amyloid polymorphism in hydrated and complex biological samples. Here, we report on the development of 11-mercapto-1-undecanesulfonate-coated gold nanoparticles (NPs) that efficiently label the edges of synthetic, recombinant, and native amyloid fibrils derived from different amyloidogenic proteins. We demonstrate that these NPs represent powerful tools for assessing amyloid morphological polymorphism, using cryogenic transmission electron microscopy (cryo-EM). The NPs allowed for the visualization of morphological features that are not directly observed using standard imaging techniques, including transmission electron microscopy with use of the negative stain or cryo-EM imaging. The use of these NPs to label native paired helical filaments (PHFs) from the postmortem brain of a patient with Alzheimer's disease, as well as amyloid fibrils extracted from the heart tissue of a patient suffering from systemic amyloid light-chain amyloidosis, revealed a high degree of homogeneity across the fibrils derived from human tissue in comparison with fibrils aggregated in vitro. These findings are consistent with, and strongly support, the emerging view that the physiologic milieu is a key determinant of amyloid fibril strains. Together, these advances should not only facilitate the profiling and characterization of amyloids for structural studies by cryo-EM, but also pave the way to elucidate the structural basis of amyloid strains and toxicity, and possibly the correlation between the pathological and clinical heterogeneity of amyloid diseases.


Subject(s)
Amyloid/genetics , Amyloid/metabolism , Brain/metabolism , Cryoelectron Microscopy/methods , Gold/chemistry , Metal Nanoparticles/chemistry , Polymorphism, Genetic , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid/chemistry , Humans , Immunoglobulin Light-chain Amyloidosis/genetics , Immunoglobulin Light-chain Amyloidosis/metabolism , Immunoglobulin Light-chain Amyloidosis/pathology , Neurofibrillary Tangles
5.
J Vis Exp ; (149)2019 07 02.
Article in English | MEDLINE | ID: mdl-31329168

ABSTRACT

Gold nanoparticles covered with a mixture of 1-octanethiol (OT) and 11-mercapto-1-undecane sulfonic acid (MUS) have been extensively studied because of their interactions with cell membranes, lipid bilayers, and viruses. The hydrophilic ligands make these particles colloidally stable in aqueous solutions and the combination with hydrophobic ligands creates an amphiphilic particle that can be loaded with hydrophobic drugs, fuse with the lipid membranes, and resist nonspecific protein adsorption. Many of these properties depend on nanoparticle size and the composition of the ligand shell. It is, therefore, crucial to have a reproducible synthetic method and reliable characterization techniques that allow the determination of nanoparticle properties and the ligand shell composition. Here, a one-phase chemical reduction, followed by a thorough purification to synthesize these nanoparticles with diameters below 5 nm, is presented. The ratio between the two ligands on the surface of the nanoparticle can be tuned through their stoichiometric ratio used during synthesis. We demonstrate how various routine techniques, such as transmission electron microscopy (TEM), nuclear magnetic resonance (NMR), thermogravimetric analysis (TGA), and ultraviolet-visible (UV-Vis) spectrometry, are combined to comprehensively characterize the physicochemical parameters of the nanoparticles.


Subject(s)
Gold/chemistry , Metal Nanoparticles/chemistry , Fatty Acids/chemistry , Hydrophobic and Hydrophilic Interactions , Ligands , Metal Nanoparticles/ultrastructure , Nanotechnology , Particle Size , Sulfhydryl Compounds/chemistry
6.
J Biol Chem ; 293(48): 18540-18558, 2018 11 30.
Article in English | MEDLINE | ID: mdl-30185623

ABSTRACT

Huntington's disease is a fatal neurodegenerative disorder resulting from a CAG repeat expansion in the first exon of the gene encoding the Huntingtin protein (Htt). Phosphorylation of this protein region (Httex1) has been shown to play important roles in regulating the structure, toxicity, and cellular properties of N-terminal fragments and full-length Htt. However, increasing evidence suggests that phosphomimetic substitutions in Htt result in inconsistent findings and do not reproduce all aspects of true phosphorylation. Here, we investigated the effects of bona fide phosphorylation at Ser-13 or Ser-16 on the structure, aggregation, membrane binding, and subcellular properties of the Httex1-Q18A variant and compared these effects with those of phosphomimetic substitutions. We show that phosphorylation at either Ser-13 and/or Ser-16 or phosphomimetic substitutions at both these residues inhibit the aggregation of mutant Httex1, but that only phosphorylation strongly disrupts the amphipathic α-helix of the N terminus and prompts the internalization and nuclear targeting of preformed Httex1 aggregates. In synthetic peptides, phosphorylation at Ser-13, Ser-16, or both residues strongly disrupted the amphipathic α-helix of the N-terminal 17 residues (Nt17) of Httex1 and Nt17 membrane binding. Experiments with peptides bearing different combinations of phosphorylation sites within Nt17 revealed a phosphorylation-dependent switch that regulates the Httex1 structure, involving cross-talk between phosphorylation at Thr-3 and Ser-13 or Ser-16. Our results provide crucial insights into the role of phosphorylation in regulating Httex1 structure and function, and underscore the critical importance of identifying the enzymes responsible for regulating Htt phosphorylation, and their potential as therapeutic targets for managing Huntington's disease.


Subject(s)
Cell Nucleus/metabolism , Huntingtin Protein/metabolism , Nerve Tissue Proteins/metabolism , Nuclear Proteins/metabolism , Protein Aggregates , Animals , Cells, Cultured , Circular Dichroism , Huntingtin Protein/chemistry , Molecular Mimicry , Mutation , Nerve Tissue Proteins/chemistry , Neurons/metabolism , Nuclear Proteins/chemistry , Phosphoproteins/metabolism , Phosphorylation , Protein Conformation , Protein Structure, Secondary , Protein Transport , Rats, Sprague-Dawley , Serine/metabolism , Subcellular Fractions/metabolism
7.
Angew Chem Int Ed Engl ; 56(19): 5202-5207, 2017 05 02.
Article in English | MEDLINE | ID: mdl-28334491

ABSTRACT

Herein, we used protein semisynthesis to investigate, for the first time, the effect of lysine acetylation and phosphorylation, as well as the crosstalk between these modifications on the structure and aggregation of mutant huntingtin exon1 (Httex1). Our results demonstrate that phosphorylation at T3 stabilizes the α-helical conformation of the N-terminal 17 amino acids (Nt17) and significantly inhibits the aggregation of mutant Httex1. Acetylation of single lysine residues, K6, K9 or K15, had no effect on Httex1 aggregation. Interestingly, acetylation at K6, but not at K9 or K15, reversed the inhibitory effect of T3 phosphorylation. Together, our results provide novel insight into the role of Nt17 post-translational modifications in regulating the structure and aggregation of Httex1 and suggest that its aggregation and possibly its function(s) are controlled by regulatory mechanisms involving crosstalk between different PTMs.


Subject(s)
Huntingtin Protein/metabolism , Acetylation , Exons/genetics , Humans , Huntingtin Protein/genetics , Mutation , Phosphorylation , Protein Aggregates , Protein Conformation , Protein Processing, Post-Translational
SELECTION OF CITATIONS
SEARCH DETAIL
...