Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-31226746

ABSTRACT

The fields of urban planning and public health were conceived under the same pressures and goals at their inception in the 17th and 18th centuries and continue to address the health concerns of an ever-increasing urban population. While the mutual need that both philosophies have for each other becomes more tangible through research and practice, the application of their interrelatedness continues to benefit residents and visitors of mindfully-built environments. In health-conscious Los Angeles, there lacks a comprehensive assessment of health-centered considerations being implemented by those entrusted with the responsibility of shaping our cities. As a greater majority of the world's population moves into urban settings, built environment interventions play a progressively vital role in addressing physical and mental health concerns. This piece hopes to bring to attention the need for focused and dynamic approaches in addressing health concerns by means of design, planning, and policy, by focusing on the challenges and opportunities faced by the geographic and human resources of the Greater Los Angeles area.


Subject(s)
City Planning , Environment Design , Mental Health , Public Health , Cities , Food Supply , Humans , Los Angeles , Research , Safety , Urban Population , Walking
2.
Neuropsychopharmacology ; 43(11): 2165-2179, 2018 10.
Article in English | MEDLINE | ID: mdl-30022062

ABSTRACT

Lipid microdomains ("rafts") are dynamic, nanoscale regions of the plasma membrane enriched in cholesterol and glycosphingolipids, that possess distinctive physicochemical properties including higher order than the surrounding membrane. Lipid microdomain integrity is thought to affect neurotransmitter signaling by regulating membrane-bound protein signaling. Among the proteins potentially affected are monoaminergic receptors and transporters. As dysfunction of monoaminergic neurotransmission is implicated in major depressive disorder and other neuropsychiatric conditions, interactions with lipid microdomains may be of clinical importance. This systematic review evaluates what is known about the molecular relationships of monoamine transporter and receptor regulation to lipid microdomains. The PubMed/MeSH database was searched for original studies published in English through August 2017 concerning relationships between lipid microdomains and serotonin, dopamine and norepinephrine transporters and receptors. Fifty-seven publications were identified and assessed. Strong evidence implicates lipid microdomains in the regulation of serotonin and norepinephrine transporters; serotonin 1A, 2A, 3A, and 7A receptors; and dopamine D1 and ß2 adrenergic receptors. Results were conflicting or more complex regarding lipid microdomain associations with the dopamine transporter, D2, D3, and D5 receptors; and negative with respect to ß1 adrenergic receptors. Indirect evidence suggests that antidepressants, lipid-lowering drugs, and polyunsaturated fatty acids may exert effects on depression and suicide by altering the lipid milieu, thereby affecting monoaminergic transporter and receptor signaling. The lipid composition of membrane subdomains is involved in localization and trafficking of specific monoaminergic receptors and transporters. Elucidating precise mechanisms whereby lipid microdomains modulate monoamine neurotransmission in clinical contexts can have critical implications for pharmacotherapeutic targeting.


Subject(s)
Depressive Disorder, Major/metabolism , Lipid Metabolism/physiology , Membrane Microdomains/metabolism , Receptors, Biogenic Amine/metabolism , Vesicular Monoamine Transport Proteins/metabolism , Animals , Depressive Disorder, Major/psychology , Dopamine Plasma Membrane Transport Proteins/physiology , Humans , Norepinephrine Plasma Membrane Transport Proteins/physiology
3.
Biochem Biophys Rep ; 10: 132-136, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28955740

ABSTRACT

Lipid microdomains ('lipid rafts') are plasma membrane subregions, enriched in cholesterol and glycosphingolipids, which participate dynamically in cell signaling and molecular trafficking operations. One strategy for the study of the physicochemical properties of lipid rafts in model membrane systems has been the use of nuclear magnetic resonance (NMR), but until now this spectroscopic method has not been considered a clinically relevant tool. We performed a proof-of-concept study to test the feasibility of using NMR to study lipid rafts in human tissues. Platelets were selected as a cost-effective and minimally invasive model system in which lipid rafts have previously been studied using other approaches. Platelets were isolated from plasma of medication-free adult research participants (n=13) and lysed with homogenization and sonication. Lipid-enriched fractions were obtained using a discontinuous sucrose gradient. Association of lipid fractions with GM1 ganglioside was tested using HRP-conjugated cholera toxin B subunit dot blot assays. 1H high resolution magic-angle spinning nuclear magnetic resonance (HRMAS NMR) spectra obtained with single-pulse Bloch decay experiments yielded spectral linewidths and intensities as a function of temperature. Rates of lipid lateral diffusion that reported on raft size were measured with a two-dimensional stimulated echo longitudinal encode-decode NMR experiment. We found that lipid fractions at 10-35% sucrose density associated with GM1 ganglioside, a marker for lipid rafts. NMR spectra of the membrane phospholipids featured a prominent 'centerband' peak associated with the hydrocarbon chain methylene resonance at 1.3 ppm; the linewidth (full width at half-maximum intensity) of this 'centerband' peak, together with the ratio of intensities between the centerband and 'spinning sideband' peaks, agreed well with values reported previously for lipid rafts in model membranes. Decreasing temperature produced decreases in the 1.3 ppm peak intensity and a discontinuity at ~18 °C, for which the simplest explanation is a phase transition from Ld to Lo phases indicative of raft formation. Rates of lateral diffusion of the acyl chain lipid signal at 1.3 ppm, a quantitative measure of microdomain size, were consistent with lipid molecules organized in rafts. These results show that HRMAS NMR can characterize lipid microdomains in human platelets, a methodological advance that could be extended to other tissues in which membrane biochemistry may have physiological and pathophysiological relevance.

SELECTION OF CITATIONS
SEARCH DETAIL
...