Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 4566-4569, 2021 11.
Article in English | MEDLINE | ID: mdl-34892232

ABSTRACT

One of the critical components of robotic-assisted beating heart surgery is precise localization of a point-of-interest (POI) position on cardiac surface, which needs to be tracked by the robotic instruments. This is challenging as the incoming sensor measurements, from which POI position is localized, might be noisy and incomplete. This paper presents two Bayesian filtering based localization approaches to localize POI position online from sonomicrometer measurements. Specifically, extended Kalman filter (EKF) and particle filter (PF) localization algorithms are explored to estimate the state of POI position. The estimations of upcoming heart motion generated by the generalized adaptive predictor, which is demonstrated in the authors' past work, are also incorporated to generate an improved motion model. The proposed methods are validated with prerecorded in-vivo heart motion data.


Subject(s)
Cardiac Surgical Procedures , Robotic Surgical Procedures , Robotics , Bayes Theorem , Heart
2.
J Med Device ; 11(2): 0210041-2100411, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28690711

ABSTRACT

This paper presents design optimization of a magnetic resonance imaging (MRI) actuated steerable catheter for atrial fibrillation ablation in the left atrium. The catheter prototype, built over polymer tubing, is embedded with current-carrying electromagnetic coils. The prototype can be deflected to a desired location by controlling the currents passing through the coils. The design objective is to develop a prototype that can successfully accomplish the ablation task. To complete the tasks, the catheter needs to be capable of reaching a set of desired targets selected by a physician on the chamber and keeping a stable contact with the chamber surface. The design process is based on the maximization of the steering performance of the catheter by evaluating its workspace in free space. The selected design is validated by performing a simulation of an ablation intervention on a virtual model of the left atrium with a real atrium geometry. This validation shows that the prototype can reach every target required by the ablation intervention and provide an appropriate contact force against the chamber.

SELECTION OF CITATIONS
SEARCH DETAIL
...