Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Appl Physiol ; 120(11): 2547-2554, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32862247

ABSTRACT

PURPOSE: Premature birth is associated with lasting effects, including lower exercise capacity and pulmonary function, and is acknowledged as a risk factor for cardiovascular disease. The aim was to evaluate factors affecting exercise capacity in adolescents born preterm, including the cardiovascular and pulmonary responses to exercise, activity level and strength. METHODS: 21 preterm-born and 20 term-born adolescents (age 12-14 years) underwent strength and maximal exercise testing with thoracic bioimpedance monitoring. Baseline variables were compared between groups and ANCOVA was used to compare heart rate, cardiac output (Q) and stroke volume (SV) during exercise between groups while adjusting for body surface area. RESULTS: Preterm-borns had lower maximal aerobic capacity than term-borns (2.0 ± 0.5 vs. 2.5 ± 0.5 L/min, p = 0.01) and lower maximal power (124 ± 26 vs. 153 ± 33 watts, p < 0.01), despite similar physical activity scores. Pulmonary function and muscular strength did not differ significantly. Although baseline Q and SV did not differ between groups, preterm adolescents had significantly lower cardiac index (Qi) at 50, 75 and 100% of maximal time to exhaustion, driven by SV volume index (SVi, 50% max time: 53.0 ± 9.0 vs. 61.6 ± 11.4; 75%: 51.7 ± 8.4 vs. 64.3 ± 11.1; 100%: 51.2 ± 9.3 vs. 64.3 ± 11.5 ml/m2, all p < 0.01), with similar heart rates. CONCLUSION: Otherwise healthy and physically active adolescents born very preterm exhibit lower exercise capacity than term-born adolescents. Despite similar baseline cardiovascular values, preterm-born adolescents demonstrate significantly reduced Qi and SVi during incremental and maximal exercise.


Subject(s)
Cardiac Output , Cardiovascular Diseases/epidemiology , Exercise Tolerance , Infant, Premature/growth & development , Infant, Very Low Birth Weight/growth & development , Adolescent , Cardiovascular Diseases/etiology , Exercise Test , Female , Heart Rate , Humans , Infant, Newborn , Male , Muscle, Skeletal/physiology , Respiration
2.
Eur J Appl Physiol ; 119(4): 857-866, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30635708

ABSTRACT

PURPOSE: The long-term implications of premature birth on autonomic nervous system (ANS) function are unclear. Heart rate recovery (HRR) following maximal exercise is a simple tool to evaluate ANS function and is a strong predictor of cardiovascular disease. Our objective was to determine whether HRR is impaired in young adults born preterm (PYA). METHODS: Individuals born between 1989 and 1991 were recruited from the Newborn Lung Project, a prospectively followed cohort of subjects born preterm weighing < 1500 g with an average gestational age of 28 weeks. Age-matched term-born controls were recruited from the local population. HRR was measured for 2 min following maximal exercise testing on an upright cycle ergometer in normoxia and hypoxia, and maximal aerobic capacity (VO2max) was measured. RESULTS: Preterms had lower VO2max than controls (34.88 ± 5.24 v 46.15 ± 10.21 ml/kg/min, respectively, p < 0.05), and exhibited slower HRR compared to controls after 1 and 2 min of recovery in normoxia (absolute drop of 20 ± 4 v 31 ± 10 and 41 ± 7 v 54 ± 11 beats per minute (bpm), respectively, p < 0.01) and hypoxia (19 ± 5 v 26 ± 8 and 39 ± 7 v 49 ± 13 bpm, respectively, p < 0.05). After adjusting for VO2max, HRR remained slower in preterms at 1 and 2 min of recovery in normoxia (21 ± 2 v 30 ± 2 and 42 ± 3 v 52 ± 3 bpm, respectively, p < 0.05), but not hypoxia (19 ± 3 v 25 ± 2 and 40 ± 4 v 47 ± 3 bpm, respectively, p > 0.05). CONCLUSIONS: Autonomic dysfunction as seen in this study has been associated with increased rates of cardiovascular disease in non-preterm populations, suggesting further study of the mechanisms of autonomic dysfunction after preterm birth.


Subject(s)
Exercise Test , Exercise/physiology , Heart Rate/physiology , Premature Birth/physiopathology , Autonomic Nervous System/physiopathology , Ergometry/methods , Exercise Tolerance/physiology , Female , Humans , Hypoxia/physiopathology , Infant, Newborn , Male , Pregnancy , Young Adult
3.
Physiol Rep ; 6(6): e13620, 2018 03.
Article in English | MEDLINE | ID: mdl-29595875

ABSTRACT

Preterm birth temporarily disrupts autonomic nervous system (ANS) development, and the long-term impacts of disrupted fetal development are unclear in children. Abnormal cardiac ANS function is associated with worse health outcomes, and has been identified as a risk factor for cardiovascular disease. We used heart rate variability (HRV) in the time domain (standard deviation of RR intervals, SDRR; and root means squared of successive differences, RMSSD) and frequency domain (high frequency, HF; and low frequency, LF) at rest, as well as heart rate recovery (HRR) following maximal exercise, to assess autonomic function in adolescent children born preterm. Adolescents born preterm (less than 36 weeks gestation at birth) in 2003 and 2004 and healthy age-matched full-term controls participated. Wilcoxon Rank Sum tests were used to compare variables between control and preterm groups. Twenty-one adolescents born preterm and 20 term-born controls enrolled in the study. Preterm-born subjects had lower time-domain HRV, including SDRR (69.1 ± 33.8 vs. 110.1 ± 33.0 msec, respectively, P = 0.008) and RMSSD (58.8 ± 38.2 vs. 101.5 ± 36.2 msec, respectively, P = 0.012), with higher LF variability in preterm subjects. HRR after maximal exercise was slower in preterm-born subjects at 1 min (30 ± 12 vs. 39 ± 9 bpm, respectively, P = 0.013) and 2 min (52 ± 10 vs. 60 ± 10 bpm, respectively, P = 0.016). This study is the first report of autonomic dysfunction in adolescents born premature. Given prior association of impaired HRV with adult cardiovascular disease, additional investigations into the mechanisms of autonomic dysfunction in this population are warranted.


Subject(s)
Autonomic Nervous System Diseases/etiology , Infant, Premature/physiology , Premature Birth/physiopathology , Adolescent , Exercise Test , Female , Heart Rate/physiology , Humans , Infant, Newborn , Male , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...