Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 12(19)2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36234397

ABSTRACT

The inexorable increase of energy demand and the efficiency bottleneck of monocrystalline silicon solar cell technology is promoting the research and development of alternative photovoltaic materials. Copper-arsenic-sulfide (CAS) compounds are still rather unexplored in the literature, yet they have been regarded as promising candidates for use as p-type absorber in solar cells, owing to their broad raw material availability, suitable bandgap and high absorption coefficient. Here, a comprehensive study is presented on the structural and optoelectronic properties of CAS thin-films deposited via radio-frequency magnetron co-sputtering, using a commercial Cu target together with a Cu-As-S target with material obtained from local resources, specifically from mines in the Portuguese region of the Iberian Pyrite Belt. Raman and X-ray diffraction analysis confirm that the use of two targets results in films with pronounced stoichiometry gradients, suggesting a transition from amorphous CAS compounds to crystalline djurleite (Cu31S16), with the increasing proximity to the Cu target. Resistivity values from 4.7 mΩ·cm to 17.4 Ω·cm are obtained, being the lowest resistive films, those with pronounced sub-bandgap free-carrier absorption. The bandgap values range from 2.20 to 2.65 eV, indicating promising application as wide-bandgap semiconductors in third-generation (e.g., multi-junction) photovoltaic devices.

2.
Nanomaterials (Basel) ; 11(7)2021 Jun 24.
Article in English | MEDLINE | ID: mdl-34202858

ABSTRACT

The pursuit of ever-more efficient, reliable, and affordable solar cells has pushed the development of nano/micro-technological solutions capable of boosting photovoltaic (PV) performance without significantly increasing costs. One of the most relevant solutions is based on light management via photonic wavelength-sized structures, as these enable pronounced efficiency improvements by reducing reflection and by trapping the light inside the devices. Furthermore, optimized microstructured coatings allow self-cleaning functionality via effective water repulsion, which reduces the accumulation of dust and particles that cause shading. Nevertheless, when it comes to market deployment, nano/micro-patterning strategies can only find application in the PV industry if their integration does not require high additional costs or delays in high-throughput solar cell manufacturing. As such, colloidal lithography (CL) is considered the preferential structuring method for PV, as it is an inexpensive and highly scalable soft-patterning technique allowing nanoscopic precision over indefinitely large areas. Tuning specific parameters, such as the size of colloids, shape, monodispersity, and final arrangement, CL enables the production of various templates/masks for different purposes and applications. This review intends to compile several recent high-profile works on this subject and how they can influence the future of solar electricity.

3.
Naturwissenschaften ; 95(3): 257-61, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18004534

ABSTRACT

Venom-injecting structures have arisen independently in unrelated arthropods including scorpions, spiders, centipedes, larval owlflies and antlions, and Hymenoptera (wasps, ants, and bees). Most arthropods use venom primarily as an offensive weapon to subdue prey, and only secondarily in defense against enemies. Venom is injected by biting with fangs or stinging with a specialized hypodermic structure used exclusively for the delivery of venom (usually modified terminal abdominal segments). A true sting apparatus, previously known only in scorpions and aculeate wasps, is now known in a third group. We here report the first known case of a cerambycid beetle using its antennae to inject a secretion that causes cutaneous and subcutaneous inflammation in humans. Scanning electron microscopy revealed that the terminal antennal segment of Onychocerus albitarsis (Pascoe) has two pores opening into channels leading to the tip through which the secretion is delivered. This is a novel case of convergent evolution: The delivery system is almost identical to that found in the stinger of a deadly buthid scorpion.


Subject(s)
Arthropod Venoms , Arthropods/physiology , Biological Evolution , Coleoptera/physiology , Insect Bites and Stings , Scorpions/physiology , Animals , Coleoptera/anatomy & histology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...