Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; 367: 128223, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36368489

ABSTRACT

Biogas is a source of renewable energy, and its production and use has been validated in anaerobic-based sewage treatment plants (STPs). However, in these systems, a large amount of methane is lost as dissolved methane (D-CH4) in the liquid effluent. In this study, the characteristics and potential energetic uses of the gas recovered during the desorption of D-CH4 from anaerobic effluents with hollow fibre membrane contactors were investigated. A pilot-scale experiment was performed using sewage and two types of membrane contactors. The recovered gas contained considerable amounts of CH4, CO2, H2S, N2, and O2; therefore, a gas upgrade is required prior to its use as a biofuel. The recovery process should be energetically self-sustainable, and induce a considerable decrease in the STP carbon footprint. Recovering D-CH4 with membrane contactors could increase the energetic potential of anaerobic-based STPs up to 50 % and allow for more sustainable systems.


Subject(s)
Sewage , Waste Disposal, Fluid , Anaerobiosis , Bioreactors , Methane , Biofuels
2.
Environ Sci Pollut Res Int ; 29(60): 90549-90566, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35871195

ABSTRACT

Dissolved gases in the effluent of anaerobic reactors, specifically dissolved methane (D-CH4) and sulphide (S2-), are a drawback for anaerobic-based sewage treatment plants (STPs). This article studied the simultaneous desorption/removal of both gases from anaerobic effluents with hollow fibre membrane contactors (HFMCs), evaluating two types of membrane materials (e.g. microporous and dense) at different operating conditions (atmospheric air as sweeping gas or vacuum, and different gas/liquid flows and vacuum pressures). The transfer of other gases, such as O2 and CO2, was studied as well. Desorption/removal efficiencies up to 99% for D-CH4 and 100% for S2- were obtained, with the higher efficiencies reported for the dense HFMC and with air as sweeping gas. It was found that the removal mechanism for S2- was oxidation with O2 from the air. In addition, the use of air as sweeping gas allowed the obtention of a nearly O2 saturated effluent, with more elevated dissolved oxygen concentrations in the microporous HFMC. Finally, it was found that the higher mass-transfer resistance in the dense membrane was compensated by a better performance in the liquid phase (lower mass-transfer resistance) in this unit, which allowed better D-CH4 desorption efficiencies.


Subject(s)
Methane , Sulfides
3.
Environ Sci Pollut Res Int ; 27(29): 35979-35992, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32277414

ABSTRACT

Upflow anaerobic sludge blanket (UASB) reactors are considered to be a sustainable and well-established technology for sewage treatment in warm climate countries. However, gases dissolved in the effluent of these reactors, CH4 and H2S in some instances, are a major drawback. These dissolved gases can be emitted into the atmosphere downstream of the anaerobic reactors, resulting in odour nuisance and, in the case of H2S, corrosion, while in the case of CH4, increasing greenhouse gas emissions with a significant loss of potentially recoverable energy. In this sense, this study aims to provide a critical review of the recent efforts to control CH4 and H2S dissolved in UASB reactor effluents, with a focus on the different available techniques. Different desorption techniques have been tested for the removal/recovery of dissolved CH4 and H2S: diffused aeration, simplified desorption chamber, packed desorption chamber, closed downflow hanging sponge reactor, membrane contactor, and vacuum desorption chamber. Other recent publications addressing the oxidation of these compounds in biological posttreatments with simultaneous nitrification/denitrification of ammonia were also discussed. Additionally, the rationale of CH4 recovery was determined by energy balance and carbon footprint approaches, and the H2S removal was examined by modelling its emission and atmospheric dispersion.


Subject(s)
Sewage , Waste Disposal, Fluid , Anaerobiosis , Bioreactors , Methane
SELECTION OF CITATIONS
SEARCH DETAIL
...