Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Cogn Neurosci ; : 1-26, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38739561

ABSTRACT

Predictive coding accounts of perception state that the brain generates perceptual predictions in the service of processing incoming sensory data. These predictions are hypothesized to be afforded by the brain's ability to internalize useful patterns, that is, statistical regularities, from the environment. We have previously argued that the N300 ERP component serves as an index of the brain's use of representations of (real-world) statistical regularities. However, we do not yet know whether overt attention is necessary in order for this process to engage. We addressed this question by presenting stimuli of either high or low real-world statistical regularity in terms of their representativeness (good/bad exemplars of natural scene categories) to participants who either fully attended the stimuli or were distracted by another task (attended/distracted conditions). Replicating past work, N300 responses were larger to bad than to good scene exemplars, and furthermore, we demonstrate minimal impacts of distraction on N300 effects. Thus, it seems that overtly focused attention is not required to maintain the brain's sensitivity to real-world statistical regularity. Furthermore, in an exploratory analysis, we showed that providing additional, artificial regularities, formed by altering the proportions of good and bad exemplars within blocks, further enhanced the N300 effect in both attended and distracted conditions, shedding light on the relationship between statistical regularities learned in the real world and those learned within the context of an experiment.

2.
Neuropsychologia ; 198: 108864, 2024 06 06.
Article in English | MEDLINE | ID: mdl-38521150

ABSTRACT

Early visual cortex (V1-V3) is believed to be critical for normal visual awareness by providing the necessary feedforward input. However, it remains unclear whether visual awareness can occur without further involvement of early visual cortex, such as re-entrant feedback. It has been challenging to determine the importance of feedback activity to these areas because of the difficulties in dissociating this activity from the initial feedforward activity. Here, we applied single-pulse transcranial magnetic stimulation (TMS) over the left posterior parietal cortex to elicit phosphenes in the absence of direct visual input to early visual cortex. Immediate neural activity after the TMS pulse was assessed using the event-related optical signal (EROS), which can measure activity under the TMS coil without artifacts. Our results show that: 1) The activity in posterior parietal cortex 50 ms after TMS was related to phosphene awareness, and 2) Activity related to awareness was observed in a small portion of V1 140 ms after TMS, but in contrast (3) Activity in V2 was a more robust correlate of awareness. Together, these results are consistent with interactive models proposing that sustained and recurrent loops of activity between cortical areas are necessary for visual awareness to emerge. In addition, we observed phosphene-related activations of the anteromedial cuneus and lateral occipital cortex, suggesting a functional network subserving awareness comprising these regions, the parietal cortex and early visual cortex.


Subject(s)
Awareness , Phosphenes , Transcranial Magnetic Stimulation , Visual Cortex , Humans , Male , Female , Awareness/physiology , Adult , Visual Cortex/physiology , Young Adult , Phosphenes/physiology , Visual Perception/physiology , Photic Stimulation , Parietal Lobe/physiology , Brain Mapping , Visual Pathways/physiology
3.
IEEE Trans Vis Comput Graph ; 29(11): 4394-4404, 2023 11.
Article in English | MEDLINE | ID: mdl-37788212

ABSTRACT

In this paper, we show that Virtual Reality (VR) sickness is associated with a reduction in attention, which was detected with the P3b Event-Related Potential (ERP) component from electroencephalography (EEG) measurements collected in a dual-task paradigm. We hypothesized that sickness symptoms such as nausea, eyestrain, and fatigue would reduce the users' capacity to pay attention to tasks completed in a virtual environment, and that this reduction in attention would be dynamically reflected in a decrease of the P3b amplitude while VR sickness was experienced. In a user study, participants were taken on a tour through a museum in VR along paths with varying amounts of rotation, shown previously to cause different levels of VR sickness. While paying attention to the virtual museum (the primary task), participants were asked to silently count tones of a different frequency (the secondary task). Control measurements for comparison against the VR sickness conditions were taken when the users were not wearing the Head-Mounted Display (HMD) and while they were immersed in VR but not moving through the environment. This exploratory study shows, across multiple analyses, that the effect mean amplitude of the P3b collected during the task is associated with both sickness severity measured after the task with a questionnaire (SSQ) and with the number of counting errors on the secondary task. Thus, VR sickness may impair attention and task performance, and these changes in attention can be tracked with ERP measures as they happen, without asking participants to assess their sickness symptoms in the moment.


Subject(s)
Computer Graphics , Virtual Reality , Humans , Electroencephalography , Task Performance and Analysis , Surveys and Questionnaires
4.
J Vis ; 22(12): 1, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36318192

ABSTRACT

Previous work has claimed that canonical viewpoints of objects are more readily perceived than noncanonical viewpoints. However, all of these studies required participants to identify the object, a late perceptual process at best and arguably a cognitive process (Pylyshyn, 1999). Here, we extend this work to early vision by removing the explicit need to identify the objects. In particular, we asked participants to make an intact/scrambled discrimination of briefly presented objects that were viewed from either typical or atypical viewpoints. Notably, participants did not have to identify the object; only discriminate it from noise (scrambled). Participants were more sensitive in discriminating objects presented in typically encountered orientations than when objects were presented in atypical depth rotations (Experiment 1). However, the same effect for objects presented in atypical picture plane rotations (as opposed to typical ones) did not reach statistical significance (Experiments 2 and 3), suggesting that particular informative views may play a critical role in this effect. We interpret this enhanced perceptibility, for both these items and good exemplars and probable scenes, as deriving from their high real-world statistical regularity.


Subject(s)
Orientation , Humans
5.
IEEE Trans Vis Comput Graph ; 28(5): 2135-2145, 2022 05.
Article in English | MEDLINE | ID: mdl-35167457

ABSTRACT

We propose augmenting immersive telepresence by adding a virtual body, representing the user's own arm motions, as realized through a head-mounted display and a 360-degree camera. Previous research has shown the effectiveness of having a virtual body in simulated environments; however, research on whether seeing one's own virtual arms increases presence or preference for the user in an immersive telepresence setup is limited. We conducted a study where a host introduced a research lab while participants wore a head-mounted display which allowed them to be telepresent at the host's physical location via a 360-degree camera, either with or without a virtual body. We first conducted a pilot study of 20 participants, followed by a pre-registered 62 participant confirmatory study. Whereas the pilot study showed greater presence and preference when the virtual body was present, the confirmatory study failed to replicate these results, with only behavioral measures suggesting an increase in presence. After analyzing the qualitative data and modeling interactions, we suspect that the quality and style of the virtual arms, and the contrast between animation and video, led to individual differences in reactions to the virtual body which subsequently moderated feelings of presence.


Subject(s)
Smart Glasses , Virtual Reality , Computer Graphics , Humans , Pilot Projects
6.
Conscious Cogn ; 75: 102805, 2019 10.
Article in English | MEDLINE | ID: mdl-31476583

ABSTRACT

Visual suppression by single-pulse transcranial magnetic stimulation (sTMS) has been attributed to interruptions of either feedforward or feedback activity in the visual stream. The relative timing of the C1 event related potential (ERP) and of the TMS suppression, taken from separate studies, supports an interruption of feedback. Here we probe the validity of such cross-study comparisons, both by conducting a literature survey and by measuring each time window within participants for the same stimuli. Cortical transmission time was estimated using the C1. We then suppressed the same stimuli that elicited the C1 using sTMS of variable post-stimulus lags. Results do not conclusively discriminate between interruption of feedback or feedforward mechanisms as the source of the visual suppression. We suggest that more evidence is needed to distinguish between feedback and feedforward interference in TMS suppression effects and we advise caution in making inferences derived from separate literatures, using different stimuli.


Subject(s)
Cerebral Cortex/physiology , Evoked Potentials/physiology , Feedback, Sensory/physiology , Transcranial Magnetic Stimulation , Visual Perception/physiology , Adult , Female , Humans , Male , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...