Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 12(7)2023 Mar 23.
Article in English | MEDLINE | ID: mdl-37050049

ABSTRACT

Biostimulants help plants cope with environmental stresses and improve vegetable yield and quality. This study was conducted to determine the protein hydrolysate (PH) effect of three different durations (weekly applications: three, six, or nine times plus an untreated control) in factorial combination with four soil electrical conductivities (EC: 1.5, 3.0, 4.5, or 6.0 mS·cm-1) on yield, fruit quality, and elemental composition of tomato 'miniplum' grown in a greenhouse. Fruit yield was best affected, during the summer, by six and nine biostimulant applications at EC 3.0 mS·cm-1, and in the same season, the six treatments led to the highest fruit number with no difference compared to nine applications; during the winter, the three and six treatments improved the mentioned variables at each EC level. Fruits' dry residue and Brixo were positively affected by biostimulation both in summer and winter. In summer, the 6.0 mS·cm-1 EC led to the highest dry residue and Brixo values, though the latter did not show any significant difference compared to 4.5 mS·cm-1; in winter, the best results corresponded to 4.5 and 6.0 mS·cm-1. A higher beneficial effect of PH on fruit antioxidant status, i.e., lycopene, polyphenols, ascorbic acid levels, and lipophilic (LAA) and hydrophilic (HAA) activity, was recorded in winter compared with summer. Positive correlations between polyphenols and LAA, as well as ascorbic acid content and HAA were found for all EC and PH treatments. Most of the mineral elements tested demonstrated concentration stability, whereas the highest EC decreased P, Mg, Cu, and Se accumulation. The opposite effect was shown by PH application on Se and Mn levels, with P tending to increase. The concentrations of Fe, Zn, and Cu were the lowest under the longest duration of PH supply. These results further confirm the essential role of plant biostimulation in enhancing tomato yield and quality, with a particular focus on the treatment duration.

2.
Plants (Basel) ; 9(8)2020 Jul 23.
Article in English | MEDLINE | ID: mdl-32718004

ABSTRACT

Shading nets have been increasingly drawing research interest, as they allow us to improve the environmental conditions for greenhouse-grown crops. The effects of two shading nets (50% and 79% shading degree), plus an unshaded control, on yield, mineral composition and antioxidants of perennial wall rocket (Diplotaxis tenuifolia L.-D.C.) grown under tunnels in southern Italy were determined. The shading application resulted in a yield decrease, compared to the unshaded control, except for the highest production under 50% shading in July. The highest yield was recorded in the April-May and May-June and the lowest in July. Similar trends were recorded for plant dry weight, leaf number per rosette and mean weight, but the latter showed the highest value under 79% light extinction in July. The rocket leaves were brighter in the summer cycles than in the spring ones. Leaf nitrate was highest in spring and under 79% shading. Potassium, phosphorus, calcium and magnesium showed the highest values in spring and in the unshaded control. The lipophilic antioxidant activity showed the highest values under the 79% shading net in the spring cropping seasons, whereas in July it did not significantly differ from 50% light extinction. The hydrophilic antioxidant activity always attained the highest values in the unshaded control. The unshaded leaves had the highest total phenol accumulation when grown in April-May and the lowest in July. The total ascorbic acid content was always highest in the unshaded control leaves compared to the shading treatments. Fifty percent crop shading is, therefore, an effective sustainable tool for increasing the yield of perennial wall rocket leaves in July, when the light intensity under the plastic tunnel exceeds the plant requirements, also resulting in a mineral composition that is not significantly different from that of the unshaded crops.

3.
Plants (Basel) ; 9(7)2020 Jun 27.
Article in English | MEDLINE | ID: mdl-32604987

ABSTRACT

The essentiality of selenium (Se) and iodine (I) for the human organism and the relationship between these two trace elements in mammal metabolism highlight the importance of the joint Se-I biofortification to vegetable crops in the frame of sustainable farming management. A research study was carried out in southern Italy to determine the effects of the combined inoculation with arbuscular mycorrhizal fungi (AMF) and biofortification with Se and I on plant growth, seed yield, quality, and antioxidant and elemental status, as well as residual biomass chemical composition of chickpea grown in two different planting times (14 January and 28 February). The AMF application improved the intensity of I and Se accumulation both in single and joint supply of these elements, resulting in higher seed yield and number as well as dry weight, and was also beneficial for increasing the content of antioxidants, protein, and macro- and microelements. Earlier planting time resulted in higher values of seed yield, as well as Se, I, N, P, Ca, protein, and antioxidant levels. Se and I showed a synergistic effect, stimulating the accumulation of each other in chickpea seeds. The AMF inoculation elicited a higher protein and cellulose synthesis, as well as glucose production in the residual biomass, compared to the single iodine application and the untreated control. From the present research, it can be inferred that the plant biostimulation through the soil inoculation with AMF and the biofortification with Se and I, applied singly or jointly, proved to be effective sustainable farming tools for improving the chickpea seed yield and/or quality, as well as the residual biomass chemical composition for energy production or beneficial metabolite extraction.

4.
Plants (Basel) ; 8(7)2019 Jul 05.
Article in English | MEDLINE | ID: mdl-31284493

ABSTRACT

Research has been increasingly focusing on the environmentally friendly biostimulation of vegetable crop performances under sustainable farming management. An experiment was carried out in southern Italy on Diplotaxis tenuifolia to assess the effects of two plant biostimulants (Legume-derived protein hydrolysate, Trainer®; Tropical plant extract, Auxym®) and a non-treated control, in factorial combination with three crop cycles (autumn-winter; winter; and winter-spring) on leaf yield, photosynthetic and colour status, quality, elemental composition, antioxidant content and activity. Both biostimulants prevalently contain amino acids and soluble peptides, showing the major effects on crop performances, though Auxym also has a small percentage of phytohormones and vitamins. The biostimulants enhanced plant growth and the productivity of perennial wall rocket. The winter-spring cycle led to higher leaf yield than the winter one. The two plant biostimulants enhanced leaf dry matter, oxalic and citric acids, Ca and P concentrations, phenols and ascorbic acid content as well as antioxidant activity, but did not increase nitrate content. A presumed mechanism involved in the enhancement of crop production could be attributed to the improvement of mineral nutrient availability and uptake. The winter-spring cycle elicited higher antioxidant content and activity than winter crops. Our current study shows that both the legume-derived protein hydrolysate and tropical plant extract represent an effective tool for boosting the yield, nutritional and functional quality of vegetable produce in the view of sustainable crop systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...