Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Chem Biol ; 15(10): 2649-2654, 2020 10 16.
Article in English | MEDLINE | ID: mdl-32902255

ABSTRACT

Interleukin-4 (IL-4) is a multifunctional cytokine and an important regulator of inflammation. When deregulated, IL-4 activity is associated with asthma, allergic inflammation, and multiple types of cancer. While antibody-based inhibitors targeting the soluble cytokine have been evaluated clinically, they failed to achieve their end points in trials. Small-molecule inhibitors are an attractive alternative, but identifying effective chemotypes that inhibit the protein-protein interactions between cytokines and their receptors remains an active area of research. As a result, no small-molecule inhibitors to the soluble IL-4 cytokine have yet been reported. Here, we describe the first IL-4 small-molecule inhibitor identified and characterized through a combination of binding-based approaches and cell-based activity assays. The compound features a nicotinonitrile scaffold with micromolar affinity and potency for the cytokine and disrupts type II IL-4 signaling in cells. Small-molecule inhibitors of these important cell-signaling proteins have implications for numerous immune-related disorders and inform future drug discovery and design efforts for these challenging protein targets.


Subject(s)
Aminopyridines/pharmacology , Interleukin-4/antagonists & inhibitors , Aminopyridines/metabolism , Humans , Interleukin-4/metabolism , Ligands , Phosphorylation/drug effects , Protein Binding , STAT6 Transcription Factor/chemistry , STAT6 Transcription Factor/metabolism , Signal Transduction/drug effects , Small Molecule Libraries/metabolism , Small Molecule Libraries/pharmacology , THP-1 Cells
2.
Angew Chem Int Ed Engl ; 55(33): 9529-33, 2016 08 08.
Article in English | MEDLINE | ID: mdl-27365192

ABSTRACT

The functionality of natural biopolymers has inspired significant effort to develop sequence-defined synthetic polymers for applications including molecular recognition, self-assembly, and catalysis. Conjugation of synthetic materials to biomacromolecules has played an increasingly important role in drug delivery and biomaterials. We developed a controlled synthesis of novel oligomers from hydroxyproline-based building blocks and conjugated these materials to siRNA. Hydroxyproline-based monomers enable the incorporation of broad structural diversity into defined polymer chains. Using a perfluorocarbon purification handle, we were able to purify diverse oligomers through a single solid-phase extraction method. The efficiency of synthesis was demonstrated by building 14 unique trimers and 4 hexamers from 6 diverse building blocks. We then adapted this method to the parallel synthesis of hundreds of materials in 96-well plates. This strategy provides a platform for the screening of libraries of modified biomolecules.


Subject(s)
Hydroxyproline/chemistry , Polyurethanes/chemical synthesis , Molecular Structure , Polyurethanes/chemistry , Solid Phase Extraction
3.
Chembiochem ; 13(4): 511-3, 2012 Mar 05.
Article in English | MEDLINE | ID: mdl-22271631

ABSTRACT

Spot lit: photocaged nucleic acids have been used to regulate gene expression through the action of light. Whereas most methods target mRNAs, DNA decoys have recently been used to target DNA transcription by targeting specific DNA-transcription-factor interactions. This has allowed researchers to "turn-off" transcription through the action of light on caged nucleic acids for the first time.


Subject(s)
DNA/genetics , Transcription, Genetic/genetics , DNA/chemistry , DNA/metabolism , DNA/radiation effects , Light , Photochemical Processes , Plasmids/genetics , Plasmids/radiation effects
4.
ACS Chem Biol ; 5(3): 313-20, 2010 Mar 19.
Article in English | MEDLINE | ID: mdl-20050613

ABSTRACT

Light-directed gene patterning methods have been described as a means to regulate gene expression in a spatially and temporally controlled manner. Several methods have been reported that use photocaged forms of small molecule effectors to control ligand-dependent transcription factors. Whereas these methods offer many advantages including high specificity and transient light-sensitivity, the free diffusion of the uncaged effector can limit both the magnitude and resolution of localized gene induction. Methods to date have been limited by the small fraction of irradiated cells that have expression levels significantly above uninduced background and have not been shown to affect a defined biological response. The tetracycline-dependent transactivator/transrepressor system, RetroTET-ART, combined with a photocaged form of doxycycline (NvOC-Dox) can be used to form photolithographic patterns of induced expression wherein up to 85% of the patterned cells show expression levels above uninduced regions. The efficiency and inducibility of the RetroTET-ART system allows one to quantitatively measure the limits of resolution and the relative induction levels mediated by a small molecule photocaged effector for the first time. Well-defined patterns of reporter genes were reproducibly formed within 6-36 h with feature sizes as small as 300 microm. After photo-patterning, NvOC-Dox can be rapidly removed, rendering cells photoinsensitive and allowing one to monitor GFP product formation in real time. Patterned co-expression of the cell surface ligand ephrin A5 on cell monolayers creates well-defined patterns that are sufficient to direct and segregate co-cultured cells via either attractive or repulsive signaling cues. The ability to direct the arrangement of cells on living cell monolayers through the action of light may serve as a model system for engineering artificial tissues.


Subject(s)
Coculture Techniques/methods , Gene Expression Regulation/radiation effects , Light , 3T3 Cells , Animals , Green Fluorescent Proteins/analysis , Green Fluorescent Proteins/genetics , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...