Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 9(32): eadg8304, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37556532

ABSTRACT

The causes of recent hydrological droughts and their future evolution under a changing climate are still poorly understood. Banking on a 216-year river flow time series at the Po River outlet, we show that the 2022 hydrological drought is the worst event (30% lower than the second worst, with a six-century return period), part of an increasing trend in severe drought occurrence. The decline in summer river flows (-4.14 cubic meters per second per year), which is more relevant than the precipitation decline, is attributed to a combination of changes in the precipitation regime, resulting in a decline of snow fraction (-0.6% per year) and snowmelt (-0.18 millimeters per day per year), and to increasing evaporation rate (+0.013 cubic kilometers per year) and irrigated areas (100% increment from 1900). Our study presents a compelling case where the hydrological impact of climate change is exacerbated by local changes in hydrologic seasonality and water use.

3.
Proc Natl Acad Sci U S A ; 111(35): 12799-804, 2014 Sep 02.
Article in English | MEDLINE | ID: mdl-25136087

ABSTRACT

Recent studies highlight linkages among the architecture of ecological networks, their persistence facing environmental disturbance, and the related patterns of biodiversity. A hitherto unresolved question is whether the structure of the landscape inhabited by organisms leaves an imprint on their ecological networks. We analyzed, based on pyrosequencing profiling of the biofilm communities in 114 streams, how features inherent to fluvial networks affect the co-occurrence networks that the microorganisms form in these biofilms. Our findings suggest that hydrology and metacommunity dynamics, both changing predictably across fluvial networks, affect the fragmentation of the microbial co-occurrence networks throughout the fluvial network. The loss of taxa from co-occurrence networks demonstrates that the removal of gatekeepers disproportionately contributed to network fragmentation, which has potential implications for the functions biofilms fulfill in stream ecosystems. Our findings are critical because of increased anthropogenic pressures deteriorating stream ecosystem integrity and biodiversity.


Subject(s)
Biofilms/growth & development , Ecosystem , Hydrology/methods , Microbiota/physiology , Models, Statistical , Rivers/microbiology , Biodiversity , Biomass , Environment , RNA, Ribosomal, 16S/physiology
4.
PLoS One ; 8(4): e60629, 2013.
Article in English | MEDLINE | ID: mdl-23613735

ABSTRACT

The temporal variability of streamflow is known to be a key feature structuring and controlling fluvial ecological communities and ecosystem processes. Although alterations of streamflow regime due to habitat fragmentation or other anthropogenic factors are ubiquitous, a quantitative understanding of their implications on ecosystem structure and function is far from complete. Here, by experimenting with two contrasting flow regimes in stream microcosms, we provide a novel mechanistic explanation for how fluctuating flow regimes may affect grazing of phototrophic biofilms (i.e., periphyton) by an invertebrate species (Ecdyonurus sp.). In both flow regimes light availability was manipulated as a control on autotroph biofilm productivity and grazer activity, thereby allowing the test of flow regime effects across various ratios of biofilm biomass to grazing activity. Average grazing rates were significantly enhanced under variable flow conditions and this effect was highest at intermediate light availability. Our results suggest that stochastic flow regimes, characterised by suitable fluctuations and temporal persistence, may offer increased windows of opportunity for grazing under favourable shear stress conditions. This bears important implications for the development of comprehensive schemes for water resources management and for the understanding of trophic carbon transfer in stream food webs.


Subject(s)
Biofilms/radiation effects , Invertebrates/radiation effects , Phototrophic Processes , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...