Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
ACS Nano ; 18(20): 12749-12759, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38726650

ABSTRACT

The complexity of the geometric and electronic structure of boron allotropes is associated with the multicentric bonding character and the consequent B polymorphism. When growth is limited to two-dimensions (2D), the structural and electronic confinement yields the borophenes family, where the interaction with the templating substrate actually determines the stability of inequivalent boron phases. We report here a detailed study of the growth of the honeycomb AlB2 phase on Al(111), followed by an investigation of its oxidation and reduction properties. By means of a combined experimental and theoretical approach, we show that the structure of the B/Al interface is affected by the complex interplay between B, Al, and common reactive agents like oxygen and hydrogen. While kinetic effects associated with diffusion and strain release influence the AlB2 growth in vacuo, Al, B, O, and H chemical affinities determine its redox behavior. Reduction with atomic hydrogen involves the B layer and yields an ordered honeycomb borophane H/AlB2 phase. Instead, oxidation takes place at the Al interface, giving origin to buried and 1D surface aluminum oxide phases.

2.
Nanomaterials (Basel) ; 13(24)2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38132981

ABSTRACT

The integration of carbon nanostructures with semiconductor nanowires holds significant potential for energy-efficient integrated circuits. However, achieving precise control over the positioning and stability of these interconnections poses a major challenge. This study presents a method for the controlled growth of carbon nanofibers (CNFs) on vertically aligned indium arsenide (InAs) nanowires. The CNF/InAs hybrid structures, synthesized using chemical vapor deposition (CVD), were successfully produced without compromising the morphology of the pristine nanowires. Under optimized conditions, preferential growth of the carbon nanofibers in the direction perpendicular to the InAs nanowires was observed. Moreover, when the CVD process employed iron as a catalyst, an increased growth rate was achieved. With and without the presence of iron, carbon nanofibers nucleate preferentially on the top of the InAs nanowires, indicating a tip growth mechanism presumably catalysed by a gold-indium alloy that selectively forms in that region. These results represent a compelling example of controlled interconnections between adjacent InAs nanowires formed by carbon fibers.

3.
Angew Chem Int Ed Engl ; 62(1): e202213295, 2023 Jan 02.
Article in English | MEDLINE | ID: mdl-36325959

ABSTRACT

The synthesis of high-value fuels and plastics starting from small hydrocarbon molecules plays a central role in the current transition towards renewable energy. However, the detailed mechanisms driving the growth of hydrocarbon chains remain to a large extent unknown. Here we investigated the formation of hydrocarbon chains resulting from acetylene polymerization on a Ni(111) model catalyst surface. Exploiting X-ray photoelectron spectroscopy up to near-ambient pressures, the intermediate species and reaction products have been identified. Complementary in situ scanning tunneling microscopy observations shed light onto the C-C coupling mechanism. While the step edges of the metal catalyst are commonly assumed to be the active sites for the C-C coupling, we showed that the polymerization occurs instead on the flat terraces of the metallic surface.

4.
Nanotechnology ; 32(10): 105703, 2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33331298

ABSTRACT

The relation between morphology and energy level alignment in carbon nanotubes (CNT) is a crucial information for the optimization of applications in nanoelectronics, optics, mechanics and (bio)chemistry. Here we present a study of the relation between the electronic properties and the morphology of single wall CNT (SWCNT), aligned multi wall CNT (MWCNT) and unaligned MWCNT. The CNT were synthesized via catalytic chemical vapor deposition in ultra-high vacuum conditions. Combined ultraviolet photoemission and inverse photoemission (IPES) spectra reveal a high sensitivity to the nanotube morphology. In the case of unaligned SWCNT the distinctive unoccupied Van Hove singularities (vHs) features are observed in the high resolution IPES spectra. Those features are assigned to semiconducting and metallic SWCNT states, according to calculated vHs DOS. The two MWCNT samples are similar in the diameter of the tube (about 15 nm) and present similar filled and empty electronic states, although the measured features in the aligned MWCNT are more defined. Noteworthy, interlayer states are also revealed. Their intensities are directly related to the MWCNT alignment. Focussing and geometrical effects associated to the MWCNT alignment are discussed to account the spectral differences.

5.
J Phys Chem Lett ; 11(20): 8887-8892, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32966082

ABSTRACT

Molecules intercalate at the graphene/metal interface even though defect-free graphene is impermeable to any atomic and molecular species in the gas and liquid phase, except hydrogen. The mechanism of molecular intercalation is still a big open question. In this Letter, by means of a combined experimental (STM, XPS, and LEED) and theoretical (DFT) study, we present a proof of how CO molecules succeed in permeating the graphene layer and get into the confined zone between graphene and the Ni(111) surface. The presence of N-dopants in the graphene layer is found to highly facilitate the permeation process, reducing the CO threshold pressure by more than one order of magnitude, through the stabilization of multiatomic vacancy defects that are the open doors to the bidimensional nanospace, with crucial implications for the catalysis under cover and for the graphene-based electrochemistry.

6.
Phys Chem Chem Phys ; 22(11): 6282-6290, 2020 Mar 18.
Article in English | MEDLINE | ID: mdl-32129435

ABSTRACT

The work function is the parameter of greatest interest in many technological applications involving charge exchange mechanisms at the surface. The possibility to produce samples with a controlled work function is then particularly interesting, albeit challenging. We synthetized nanostructured vanadium oxide films by a room temperature supersonic cluster beam deposition method, obtaining samples with tunable stoichiometry and work function (3.7-7 eV). We present an investigation of the electronic structure of several vanadium oxide films as a function of the oxygen content via in situ Auger, valence-band photoemission spectroscopy and work function measurements. The experiments probed the partial 3d density of states, highlighting the presence of strong V 3d-O 2p and V 3d-V 4s hybridizations which influence 3d occupation. We show how controlling the stoichiometry of the sample implies control over work function, and that the access to nanoscale quantum confinement can be exploited to increase the work function of the sample relative to the bulk analogue. In general, the knowledge of the interplay among work function, electronic structure, and stoichiometry is strategic to match nanostructured oxides to their target applications.

7.
ACS Nano ; 13(11): 13208-13216, 2019 Nov 26.
Article in English | MEDLINE | ID: mdl-31674760

ABSTRACT

Multi-millimeter-tall vertically aligned single-wall carbon nanotube (VA-SWCNT) forests were grown using Fe/Gd/Al2Ox catalyst with high initial growth rate of ∼2 µm s-1 and long catalyst lifetime of ∼70 min at 800 °C. The addition of Gd with a nominal thickness of 0.3 nm drastically prolonged the catalyst lifetime. The analysis of the VA-SWCNT forests by a transmission electron microscope showed that the average diameter of the SWCNTs grown with Gd is constant from the top to the bottom of the forests, while it monotonically increased without Gd. This indicated that Gd suppresses the structure change of the Fe nanoparticles in the lateral direction during the CNT growth. By X-ray photoelectron spectroscopy, it was found that the longer catalyst lifetime with Gd stems from the suppression of the interaction between Fe and C resulting in the smaller structure change of the Fe nanoparticles.

8.
Phys Chem Chem Phys ; 19(47): 32079-32085, 2017 Dec 06.
Article in English | MEDLINE | ID: mdl-29182175

ABSTRACT

Well-defined sized (5-10 nm) metallic iron nanoparticles (NPs) with body-centered cubic structure encapsulated inside the tip of millimeter-long vertically aligned carbon nanotubes (VACNTs) of uniform length have been investigated with high-resolution transmission electron microscopy and soft X-ray spectroscopy techniques. Surface-sensitive and chemically-selective measurements have been used to evaluate the magnetic properties of the encapsulated NPs. The encapsulated Fe NPs display magnetic remanence up to room temperature, low coercivity, high chemical stability and no significant anisotropy. Our surface-sensitive measurements combined with the specific morphology of the studied VACNTs allow us to pinpoint the contribution of the surface oxidized or hydroxidized iron catalysts present at the VACNT-substrate interface.

9.
Nanoscale ; 9(44): 17342-17348, 2017 Nov 16.
Article in English | MEDLINE | ID: mdl-29094126

ABSTRACT

Here, we show that the electronic properties of a surface-supported 2-dimensional (2D) layer structure can self-texturize at nanoscale. The local electronic properties are determined by structural relaxation processes through variable adsorption stacking configurations. We demonstrate that the spatially modulated layer-buckling, which arises from the lattice mismatch and the layer/substrate coupling at the GdAu2/Au(111) interface, is sufficient to locally open an energy gap of ∼0.5 eV at the Fermi level in an otherwise metallic layer. Additionally, this out-of-plane displacement of the Gd atoms patterns the character of the hybridized Gd-d states and shifts the center of mass of the Gd 4f multiplet proportionally to the lattice distortion. These findings demonstrate the close correlation between the electronic properties of the 2D-layer and its planarity. We demonstrate that the resulting template shows different chemical reactivities which may find important applications.

10.
Chem Asian J ; 11(8): 1281-7, 2016 04 20.
Article in English | MEDLINE | ID: mdl-26888601

ABSTRACT

Since the first report in 2012, molecular copper complexes have been proposed as efficient electrocatalysts for water oxidation reactions, carried out in alkaline/neutral aqueous media. However, in some cases the copper species have been recognized as precursors of an active copper oxide layer, electrodeposited onto the working electrode. Therefore, the question whether copper catalysis is molecular or not is particularly relevant in the field of water oxidation. In this study, we investigate the electrochemical activity of copper(II) complexes with two tetraaza macrocyclic ligands, distinguishing heterogeneous or homogeneous processes depending on the reaction media. In an alkaline aqueous solution, and upon application of an anodic bias to working electrodes, an active copper oxide layer is observed to electrodeposit at the electrode surface. Conversely, water oxidation in neutral aqueous buffers is not associated to formation of the copper oxide layer, and could be exploited to evaluate and optimize a molecular, homogeneous catalysis.

11.
Nanotechnology ; 27(14): 145605, 2016 Apr 08.
Article in English | MEDLINE | ID: mdl-26916977

ABSTRACT

A novel carbon-based nanostructured material, which includes carbon nanotubes (CNTs), porous carbon, nanostructured ZnO and Fe nanoparticles, has been synthetized using catalytic chemical vapour deposition (CVD) of acetylene on vertically aligned ZnO nanorods (NRs). The deposition of Fe before the CVD process induces the presence of dense CNTs in addition to the variety of nanostructures already observed on the process done on the bare NRs, which range from amorphous graphitic carbon up to nanostructured dendritic carbon films, where the NRs are partially or completely etched. The combination of scanning electron microscopy and in situ photoemission spectroscopy indicate that Fe enhances the ZnO etching, and that the CNT synthesis is favoured by the reduced Fe mobility due to the strong interaction between Fe and the NRs, and to the presence of many defects, formed during the CVD process. Our results demonstrate that the resulting new hybrid shows a higher sensitivity to ammonia gas at ambient conditions (∼60 ppb) than the carbon nanostructures obtained without the aid of Fe, the bare ZnO NRs, or other one-dimensional carbon nanostructures, making this system of potential interest for environmental ammonia monitoring. Finally, in view of the possible application in nanoscale optoelectronics, the photoexcited carrier behaviour in these hybrid systems has been characterized by time-resolved reflectivity measurements.

12.
Sci Rep ; 6: 19734, 2016 Jan 25.
Article in English | MEDLINE | ID: mdl-26804138

ABSTRACT

Control over the film-substrate interaction is key to the exploitation of graphene's unique electronic properties. Typically, a buffer layer is irreversibly intercalated "from above" to ensure decoupling. For graphene/Ni(111) we instead tune the film interaction "from below". By temperature controlling the formation/dissolution of a carbide layer under rotated graphene domains, we reversibly switch graphene's electronic structure from semi-metallic to metallic. Our results are relevant for the design of controllable graphene/metal interfaces in functional devices.

13.
ACS Nano ; 9(10): 10422-30, 2015 Oct 27.
Article in English | MEDLINE | ID: mdl-26375167

ABSTRACT

We dope nanotube forests using evaporated MoO3 and observe the forest resistivity to decrease by 2 orders of magnitude, reaching values as low as ∼5 × 10(-5) Ωcm, thus approaching that of copper. Using in situ photoemission spectroscopy, we determine the minimum necessary MoO3 thickness to dope a forest and study the underlying doping mechanism. Homogenous coating and tube compaction emerge as key factors for decreasing the forest resistivity. When all nanotubes are fully coated with MoO3 and packed, conduction channels are created both inside the nanotubes and on the outside oxide layer. This is supported by density functional theory calculations, which show a shift of the Fermi energy of the nanotubes and the conversion of the oxide into a layer of metallic character. MoO3 doping removes the need for chirality control during nanotube growth and represents a step forward toward the use of forests in next-generation electronics and in power cables or conductive polymers.

14.
ACS Appl Mater Interfaces ; 7(30): 16819-27, 2015 Aug 05.
Article in English | MEDLINE | ID: mdl-26176167

ABSTRACT

We grow dense carbon nanotube forests at 450 °C on Cu support using Co/Al/Mo multilayer catalyst. As a partial barrier layer for the diffusion of Co into Mo, we apply very thin Al layer with the nominal thickness of 0.50 nm between Co and Mo. This Al layer plays an important role in the growth of dense CNT forests, partially preventing the Co-Mo interaction. The forests have an average height of ∼300 nm and a mass density of 1.2 g cm(-3) with tubes exhibiting extremely narrow inner spacing. An ohmic behavior is confirmed between the forest and Cu support with the lowest resistance of ∼8 kΩ. The forest shows a high thermal effusivity of 1840 J s(-0.5) m(-2) K(-1), and a thermal conductivity of 4.0 J s(-1) m(-1) K(-1), suggesting that these forests are useful for heat dissipation devices.

15.
Nano Lett ; 15(1): 56-62, 2015 Jan 14.
Article in English | MEDLINE | ID: mdl-25535802

ABSTRACT

Atomic-scale description of the structure of graphene edges on Ni(111), both during and post growth, is obtained by scanning tunneling microscopy (STM) in combination with density functional theory (DFT). During growth, at 470 °C, fast STM images (250 ms/image) evidence graphene flakes anchored to the substrate, with the edges exhibiting zigzag or Klein structure depending on the orientation. If growth is frozen, the flake edges hydrogenate and detach from the substrate, with hydrogen reconstructing the Klein edges.

16.
ACS Nano ; 7(9): 7901-12, 2013 Sep 24.
Article in English | MEDLINE | ID: mdl-23924234

ABSTRACT

The key atomistic mechanisms of graphene formation on Ni for technologically relevant hydrocarbon exposures below 600 °C are directly revealed via complementary in situ scanning tunneling microscopy and X-ray photoelectron spectroscopy. For clean Ni(111) below 500 °C, two different surface carbide (Ni2C) conversion mechanisms are dominant which both yield epitaxial graphene, whereas above 500 °C, graphene predominantly grows directly on Ni(111) via replacement mechanisms leading to embedded epitaxial and/or rotated graphene domains. Upon cooling, additional carbon structures form exclusively underneath rotated graphene domains. The dominant graphene growth mechanism also critically depends on the near-surface carbon concentration and hence is intimately linked to the full history of the catalyst and all possible sources of contamination. The detailed XPS fingerprinting of these processes allows a direct link to high pressure XPS measurements of a wide range of growth conditions, including polycrystalline Ni catalysts and recipes commonly used in industrial reactors for graphene and carbon nanotube CVD. This enables an unambiguous and consistent interpretation of prior literature and an assessment of how the quality/structure of as-grown carbon nanostructures relates to the growth modes.

17.
Eur J Pharm Biopharm ; 84(1): 138-44, 2013 May.
Article in English | MEDLINE | ID: mdl-23238273

ABSTRACT

Vincamine is a poorly soluble potent neuroprotector and cerebral vasodilator, used for the treatment for CNS disorders. In some cases, the bioavailability of pure compounds is strongly influenced by the co-administration of other constituents, and in some cases, the so called 'phytocomplex' may act as enhancer of absorption of selected phytochemicals. In this paper, the oral bioavailability of vincamine when administered as a standardised Vinca minor L. leaf dry extract rather than pure indole alkaloid is demonstrated to be higher. The chosen alkaloid-enriched and standardised dry extract was widely characterised by means of HPLC-MS, PXRD, DSC, XPS, (13)C and (15)N solid-state NMR (SSNMR) using pure vincamine as a matter of comparison. Then, the in vitro dissolution performances of the two products and their in vivo bioavailability in rats were evaluated. The sevenfold improvement in oral bioavailability of the dry extract with respect to the pure vincamine was ascribed to interactions between the indole alkaloid and the corollary of ingredients of the dry extract, giving rise to the protonation of the alkaloid vincamine, thus enhancing its dissolution in physiological fluids. Present data demonstrate that alkaloid vincamine administered as a whole plant extract has a higher bioavailability compared to the pure chemical compound.


Subject(s)
Plant Extracts/administration & dosage , Plant Leaves , Vinca , Vincamine/administration & dosage , Administration, Oral , Animals , Biological Availability , Drug Synergism , Plant Extracts/chemistry , Plant Extracts/pharmacokinetics , Rats , Rats, Sprague-Dawley , Up-Regulation/drug effects , Vincamine/chemistry , Vincamine/pharmacokinetics
18.
Mol Pharm ; 10(1): 211-24, 2013 Jan 07.
Article in English | MEDLINE | ID: mdl-23186380

ABSTRACT

In the present research a salt of vincamine, a poorly bioavailable indole alkaloid derived from the leaves of Vinca minor L., was synthesized in the solid state by means of a mechanochemical process employing citric acid as a reagent. The mechanochemical process was adopted as a solvent-free alternative to classical citrate synthetic route that involves the use of solvents. Since the mechanochemical salification is little studied to date and presents the disadvantage of offering a low yield, in this work, the influence of three process and formulation variables on the percentage of vincamine citrate was studied. In particular, the time of mechanical treatment (in planetary mill Fritsch P5) and the amount of citric acid were varied in order to evaluate their effect on the yield of the process, and the introduction of a solid solvent, a common pharmaceutical excipient (sodium carboxymethylcellulose, NaCMC), was considered. Due to the complexity of the resulting samples' matrix, an appropriate experimental design was employed to project the experimental trials and the influence of the three variables on the experimental response was estimated with the help of a statistical analysis. The experimental response, that is, the yield of the process corresponding to the percentage of vincamine in the protonated form, was unconventionally calculated by means of X-ray photoelectron spectroscopy analysis (XPS). Out of 16 samples, the one with the highest yield was the coground sample containing vincamine and citric acid in a 1:2 molar ratio, treated for 60 min in the presence of NaCMC. Under the above conditions the salification reaction was completed highlighting the importance of a proper selection of process and formulation variables of the mechanochemical salification, and emphasizing the crucial role of the solid solvent in facilitating the salification. The second step of the research encompassed the characterization of the citrate salt obtained by solid excipient assisted mechanochemical salification (SEAMS) in comparison with the vincamine citrate obtained by classical synthetic route. The samples were characterized by, besides XPS, high resolution transmission electron microscopy (HRTEM), X-ray powder diffraction (XRPD), in vitro solubilization kinetics and in vivo oral pilot study in rats. Finally, in order to monitor over time possible disproportionation phenomena, stability studies have been performed by repeating XPS analysis after 8 months. As expected, the the SEAMS-vincamine salt consisted of particles both crystalline and amorphous. The solubilization kinetics was superior to the corresponding salt probably thanks to the favorable presence of the hydrophilic excipient although the two salts were bioequivalent in rats after oral administration. Furthermore, no evidence of disporportionation phenomena in the SEAMS-vincamine salt was found after storage. In conclusion, in the case of forming salts of poorly soluble drugs, the SEAMS process may be an interesting alternative to both classical synthetic routes, eliminating the need for solvent removal, and simple neat mechanochemical salification, overcoming the problem of limited process yield.


Subject(s)
Citric Acid/chemistry , Vincamine/chemistry , Animals , Biological Availability , Chemistry, Pharmaceutical/methods , Drug Stability , Excipients/chemistry , Kinetics , Particle Size , Photoelectron Spectroscopy/methods , Pilot Projects , Rats , Rats, Sprague-Dawley , Salts/chemistry , Solubility , Solvents/chemistry , Vincamine/administration & dosage , Vincamine/blood , Vincamine/pharmacokinetics , X-Ray Diffraction/methods
19.
J Phys Chem Lett ; 3(11): 1559-64, 2012 Jun 07.
Article in English | MEDLINE | ID: mdl-26285638

ABSTRACT

A key stage in engineering molecular functional organizations is represented by controlling the supramolecular assembly of single molecular building blocks, tectons, into ordered networks. Here, we show how an open-shell, propeller-like molecule has been deposited under UHV conditions on Au(111) and its supramolecular organization characterized by scanning tunneling microscopy (STM). Racemic islands were observed at room temperature, and their chirality was imaged at the molecular level at low temperature. Modeling further suggests that the observed chirally alternating ordering dominated by intermolecular interactions is energetically favored. Electron paramagnetic resonance and ultraviolet photoemission spectroscopy evidences suggest that the supramolecular networks may preserve the open-shell character of the tecton. These results represent a fundamental step forward toward the engineering of purely organic spintronic devices.

20.
Pharm Res ; 28(8): 1870-83, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21424156

ABSTRACT

PURPOSE: Enhancing oral bioavailability of vinpocetine by forming its amorphous citrate salt through a solvent-free mechanochemical process, in presence of micronised crospovidone and citric acid. METHODS: The impact of formulation and process variables (amount of polymer and citric acid, and milling time) on vinpocetine solubilization kinetics from the coground was studied through an experimental design. The best performing samples were characterized by employing a multidisciplinary approach, involving Differential scanning calorimetry, X-ray diffraction, Raman imaging/spectroscopy, X-ray photoelectron spectroscopy, solid-state NMR spectroscopy, porosimetry and in vivo studies on rats to ascertain the salt formation, their solid-state characteristics and oral bioavailability in comparison to vinpocetine citrate salt (Oxopocetine(®)). RESULTS: The analyses attested that the mechanochemical process is a viable way to produce in absence of solvents vinpocetine citrate salt in an amorphous state. CONCLUSION: From the in vivo studies on rats the obtained salt was four times more bioavailable than its physical mixture and bioequivalent to the commercial salt produced by conventional synthetic process implying the use of solvent.


Subject(s)
Vinca Alkaloids/chemistry , Vinca Alkaloids/pharmacokinetics , Administration, Oral , Animals , Biological Availability , Calorimetry, Differential Scanning/methods , Chemistry, Pharmaceutical/methods , Citric Acid/chemistry , Magnetic Resonance Spectroscopy/methods , Particle Size , Photoelectron Spectroscopy/methods , Povidone/chemistry , Rats , Rats, Sprague-Dawley , Solubility , Spectrum Analysis, Raman/methods , Vinca Alkaloids/administration & dosage , X-Ray Diffraction/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...