Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(12): e0288553, 2023.
Article in English | MEDLINE | ID: mdl-38051703

ABSTRACT

BACKGROUND: Sitting for long periods of time and lack of physical activity in young adults can cause postural deterioration leading to rapid onset of fatigue and increase the risk of back pain. We were interested in whether there are gender differences in spinal curvature among university students with a predominantly sedentary lifestyle. METHODS: 20 sedentary female (age 20 ± 0.73 years) and 39 sedentary male university students (age 20 ± 1.08 years) participated in this study. Their thoracic and lumbar curvatures were assessed while standing and sitting using a Spinal Mouse. RESULTS: In standing, 80.0% of the females and 69.2% of the males had a neutral position of the thoracic spine (33.25° and 35.33°, respectively). However, more males, 30.8%, than females, 10.0%, had hyperkyphosis (54.27° and 47.0°, respectively). Hypokyphosis was found in 10.0% of the females (18.50°) and none in the males. Similarly, 90.0% of the females and 97.4% of the males had neutral position of the lumbar spine (-33.11° and -29.76°, respectively). Increased hyperlordosis was found in 10.0% of the females and 2.6% of the males (-41.0° and -50.0°, respectively). Hypolordosis was not detected in either females or males. In sitting, on the other hand, 70.0% of the females and only 33.3% of the males had a neutral position of the thoracic spine (30.20° and 30.62°, respectively). Increased hyperkyphosis was found in 46.2% of the males (59.76°) and none of the females. 30.0% of the females and 23.1% of the males had light hypokyphosis (47.50° and 46.67°, respectively). Similarly, 70.0% of the females and only 38.5% of the males had a neutral position of the lumbar spine (7.0° and 6.6°, respectively). 35.9% of the males and only 5.0% of the females had a light hypokyphosis (16.14° and 16.0°, respectively). Slightly increased hyperkyphosis was identified in 25.6% of the males and 25.0% of the females (23.9° and 22.5°, respectively). CONCLUSION: There are significant gender differences in spinal curvature. While in the thoracic spine it was to the detriment of the males when both standing and sitting, in the lumbar spine it is related to the females only when standing. It is therefore necessary to eliminate these spinal deviations in young adults induced by prolonged sitting during university courses by appropriate recovery modalities.


Subject(s)
Kyphosis , Spinal Curvatures , Female , Humans , Male , Young Adult , Lumbar Vertebrae , Posture , Sedentary Behavior , Spine , Students , Universities
2.
PeerJ ; 9: e11969, 2021.
Article in English | MEDLINE | ID: mdl-34434668

ABSTRACT

BACKGROUND: Although low back fatigue is an important intervening factor for physical functioning among sedentary people, little is known about its possible significance in relation to the spinal posture and compensatory postural responses to unpredictable stimuli. This study investigates the effect of lumbar muscle fatigue on spinal curvature and reactive balance control in response to externally induced perturbations. METHODS: A group of 38 young sedentary individuals underwent a perturbation-based balance test by applying a 2 kg load release. Sagittal spinal curvature and pelvic tilt was measured in both a normal and Matthiass standing posture both with and without a hand-held 2 kg load, and before and after the Sørensen fatigue test. RESULTS: Both the peak anterior and peak posterior center of pressure (CoP) displacements and the corresponding time to peak anterior and peak posterior CoP displacements significantly increased after the Sørensen fatigue test (all at p < 0.001). A lumbar muscle fatigue led to a decrease of the lumbar lordosis in the Matthiass posture while holding a 2 kg load in front of the body when compared to pre-fatigue conditions both without a load (p = 0.011, d = 0.35) and with a 2 kg load (p = 0.000, d = 0.51). Also the sacral inclination in the Matthiass posture with a 2 kg additional load significantly decreased under fatigue when compared to all postures in pre-fatigue conditions (p = 0.01, d = 0.48). Contrary to pre-fatigue conditions, variables of the perturbation-based balance test were closely associated with those of lumbar curvature while standing in the Matthiass posture with a 2 kg additional load after the Sørensen fatigue test (r values in range from -0.520 to -0.631, all at p < 0.05). CONCLUSION: These findings indicate that lumbar muscle fatigue causes changes in the lumbar spinal curvature and this is functionally relevant in explaining the impaired ability to maintain balance after externally induced perturbations. This emphasizes the importance for assessing both spinal posture and reactive balance control under fatigue in order to reveal their interrelations in young sedentary adults and predict any significant deterioration in later years.

3.
Motor Control ; 25(3): 437-450, 2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33883296

ABSTRACT

This study investigates postural responses to unexpected perturbations induced by a load release of different weights. Groups of 26 men (age 22.6 ± 2.4 years, height 178.0 ± 9.1 cm, and body mass 86.9 ± 11.5 kg) and 21 women (age 21.9 ± 2.7 years, height 168.8 ± 6.8 cm, and body mass 65.3 ± 8.7 kg) underwent load-triggered postural perturbations by 1 and 2 kg while standing on a force plate with either eyes open or eyes closed. Postural perturbations induced by a heavier load, representing about 2% and 3% of body weight in men and women, respectively, led to significantly higher peak anterior and peak posterior center of pressure displacements when compared with a lighter load (29.6% and 45.4%, respectively) both with eyes open (36.9%) and closed (42.1%). Their values were significantly lower in men than women only when a higher load was used (∼25%). However, there were no significant differences in time to peak anterior and posterior center of pressure displacements. These findings indicate that heavier load-induced postural perturbations are greater in women than men regardless of visual conditions. This underlines the importance of loading dose in the magnitude of postural responses to externally induced perturbations.


Subject(s)
Postural Balance , Standing Position , Adult , Female , Humans , Male , Sedentary Behavior , Young Adult
4.
J Strength Cond Res ; 31(8): 2246-2254, 2017 Aug.
Article in English | MEDLINE | ID: mdl-27806016

ABSTRACT

Zemková, E, Cepková, A, Uvacek, M, and Soos, L. A novel method for assessing muscle power during the standing cable wood chop exercise. J Strength Cond Res 31(8): 2246-2254, 2017-The study estimates the repeatability and sensitivity of a novel method for assessing (a) the maximal power during the standing cable wood chop exercise with different weights and (b) the endurance of the core muscles. A group of 23 fit men performed (a) maximal effort single repetitions of the standing cable wood chop exercise with weights increasing stepwise up to 1 repetition maximum (1RM) and (b) a set of 20 repetitions at a previously established weight at which maximal power was achieved. Results showed that mean power during the standing cable wood chop exercise is a reliable parameter, with intraclass correlation coefficient values above 0.90 for all weights tested. It was also shown to be a sensitive parameter able to discriminate within-group differences in the maximal power and endurance of core muscles. Substantial individual differences were found in mean power, especially at higher weights, and in the maximal power achieved at about 75% of 1RM (462.2 ± 57.4 W, n = 11), 67% of 1RM (327.2 ± 49.7 W, n = 7), and 83% of 1RM (524.0 ± 63.2 W, n = 5). At these weights, there were also significant differences between the initial and the final repetitions of the wood chop exercise (13.9%, p = 0.025; 10.2%, p = 0.036; and 13.8%, p = 0.028, respectively). These findings indicate that evaluation of the maximal power and endurance of the core muscles during the standing cable wood chop exercise on a weight stack machine is a reliable method and sensitive to differences among physically active individuals.


Subject(s)
Exercise Test/methods , Exercise/physiology , Muscle Strength/physiology , Muscle, Skeletal/physiology , Weight Lifting/physiology , Adult , Body Weight , Humans , Male , Physical Endurance/physiology , Posture , Wood
SELECTION OF CITATIONS
SEARCH DETAIL
...