Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-32733812

ABSTRACT

The steady increase in life-expectancy of world population, coupled to many genetic and environmental factors (for instance, pre- and post-natal exposures to environmental neurotoxins), predispose to the onset of neurodegenerative diseases, whose prevalence is expected to increase dramatically in the next years. Recent studies have proposed links between the gut microbiota and neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. Human body is a complex structure where bacterial and human cells are almost equal in numbers, and most microbes are metabolically active in the gut, where they potentially influence other target organs, including the brain. The role of gut microbiota in the development and pathophysiology of the human brain is an area of growing interest for the scientific community. Several microbial-derived neurochemicals involved in the gut-microbiota-brain crosstalk seem implicated in the biological and physiological basis of neurodevelopment and neurodegeneration. Evidence supporting these connections has come from model systems, but there are still unsolved issues due to several limitations of available research tools. New technologies are recently born to help understanding the causative role of gut microbes in neurodegeneration. This review aims to make an overview of recent advances in the study of the microbiota-gut-brain axis in the field of neurodegenerative disorders by: (a) identifying specific microbial pathological signaling pathways; (b) characterizing new, advanced engineered tools to study the interactions between human cells and gut bacteria.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Neurodegenerative Diseases , Bacteria , Brain , Humans
2.
Int J Food Sci Nutr ; 70(1): 1-19, 2019 Feb.
Article in English | MEDLINE | ID: mdl-29671359

ABSTRACT

The gut:brain axis is emerging as an important information highway linking the foods we eat with neurophysiological development and functions. Some gut microorganisms have shown to alleviate anxiety and depression, improve cognitive performance and play a role in brain development in early life. However, most studies were conducted in laboratory animals and these findings await confirmation in carefully designed human interventions. Similarly, little attention has been given to how diet:microbe interactions within the gut can impact on neurotransmitter production or their subsequent biological effects within the nervous system. In this review, we discuss the possible influence of carbohydrates, polyphenols, lipids and proteins colonic fermentation on production, bioavailability and biological activity of metabolites linked to the gut-microbiota-brain axis. An increased understanding of how nervous system may be regulated by diet will greatly enhance our ability to design dietary strategies to improve healthy brain development and functions.


Subject(s)
Brain/growth & development , Brain/physiology , Diet , Gastrointestinal Microbiome/physiology , Gastrointestinal Tract/metabolism , Animals , Biological Availability , Carbohydrate Metabolism , Fermentation , Gastrointestinal Tract/microbiology , Host Microbial Interactions/physiology , Humans , Indoles/metabolism , Kynurenine/metabolism , Lipid Metabolism , Microbial Viability , Nervous System , Neurotransmitter Agents/metabolism , Polyphenols/metabolism , Proteins/metabolism , Serotonin/metabolism , Tryptophan/metabolism
3.
Int J Food Sci Nutr ; 69(3): 318-333, 2018 May.
Article in English | MEDLINE | ID: mdl-28859525

ABSTRACT

Developing fish farming to meet the demands of food security and sustainability in the 21st century will require new farming systems and improved feeds. Diet and microbe interactions in the gut is an important variable with the potential to make a significant impact on future fish farming diets and production systems. It was monitored the gut microbiota of farmed rainbow trout using 16S rRNA profiling over 51 weeks during standard rearing conditions and feeding diet with supplementation of an essential oils (MixOil) mixture from plants (at a concentration in diet of 200 mg/kg). Gut microbiota 16S rRNA profiling indicated that the fish gut was dominated by Actinobacteria, Proteobacteria, Bacteroidetes and Firmicutes. Although the dietary supplementation with MixOil had no impact on either the composition or architecture of gut microbiota, significant changes in alpha and beta diversity and relative abundance of groups of gut bacteria were evident during growth stages on test feeds, especially upon prolonged growth on finishing feed. Fish fillet quality to guarantee palatability and safety for human consumption was also evaluated. Significant differences within the gut microbiota of juvenile and adult trout under the same rearing conditions were observed, The addition of essential oil blend affected some physicochemical characteristics of trout fillets, including their resistance to oxidative damage and their weight loss (as liquid loss and water holding capacity) during the first period of storage, that are two important parameters related to product shelf life and susceptibility to spoilage. The results highlighted the need for further studies concern dietary microbiome modulation at different life stages and its influence on animal health, growth performance and final product quality.


Subject(s)
Diet/veterinary , Gastrointestinal Microbiome/drug effects , Oils, Volatile/administration & dosage , Oncorhynchus mykiss/growth & development , Animal Feed/analysis , Animals , Food Quality , Gene Library , Oncorhynchus mykiss/microbiology , RNA, Ribosomal, 16S/isolation & purification , Seafood/analysis , Sequence Analysis, DNA
4.
J Pharm Biomed Anal ; 61: 230-6, 2012 Mar 05.
Article in English | MEDLINE | ID: mdl-22226040

ABSTRACT

The classification of an impurity of a drug substance as genotoxic means that the "threshold of toxicological concern" (TTC) value of 1.5 µg/day intake, considered to be associated with an acceptable risk, should be the admissible limit in the raw material and that leads to new analytical challenges. In this study, reliable chromatographic methods were developed and applied as limit tests for the control of three genotoxic impurities (GTIs) in cloperastine fendizoate, drug widely used as an antitussive active pharmaceutical ingredient (API). In particular, GC-MS was applied to the determination of one alkyl halide (2-chloroethanol, 2-CE), while HPLC-DAD was selected for the analysis of two sulfonate esters (methyl p-toluenesulfonate, MPTS, and 2-chloroethyl p-toluenesulfonate, CEPTS). Regarding GC-MS, strong anion-exchange (SAX)-SPE was applied to remove fendizoate from the sample solutions, due its low volatility and its high amount in the raw material. The GC-MS analysis was performed on a Factor Four VF-23 ms capillary column (30 m × 0.25 mm I.D., film thickness 0.25 µm, Varian). Single ion-monitoring (SIM) detection mode was set at m/z 80. In the case of HPLC-DAD, a suitable optimization of the chromatographic conditions was carried out in order to obtain a good separation of the impurity peaks from the drug substance peaks. The optimized method utilizes a SymmetryShield RP(8) column (250 mm × 4.6 mm, 5 µm, Waters) kept at 50°C, with phosphate buffer (pH 3.0; 10 mM)-methanol (containing 10% ACN) (45:55, v/v) as the mobile phase, at the flow-rate of 1.7 mL/min and UV detection at 227 nm. The required sensitivity level was achieved by injecting 80 µL of sample solution, purified from fendizoate by SAX-SPE, followed by a 1:1 (v/v) dilution of the SPE eluate with water. For both GC-MS and HPLC-DAD, the method validation was performed in relation to specificity and limit of detection (LOD), as required by ICH guidelines in relation to limit assays. The developed methods were successfully applied for the determination of GTIs in five different batches of cloperastine fendizoate. In all the analyzed batches, the three target GTIs were below the concentration limit.


Subject(s)
Drug Contamination , Gas Chromatography-Mass Spectrometry/methods , Mutagenicity Tests/methods , Piperidines/toxicity , Chromatography/methods , Chromatography/standards , Chromatography, High Pressure Liquid/methods , Chromatography, High Pressure Liquid/standards , Gas Chromatography-Mass Spectrometry/standards , Mutagenicity Tests/standards , Piperidines/chemistry , Piperidines/standards
SELECTION OF CITATIONS
SEARCH DETAIL
...