Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Invest Ophthalmol Vis Sci ; 65(5): 41, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38809543

ABSTRACT

Purpose: The rat controlled elevation of intraocular pressure (CEI) model allows study of in vivo responses to short-term exposure to defined intraocular pressures (IOP). In this study, we used NanoString technology to investigate in vivo IOP-related gene responses in the trabecular meshwork (TM) and optic nerve head (ONH) simultaneously from the same animals. Methods: Male and female rats (N = 35) were subjected to CEI for 8 hours at pressures simulating mean, daytime normotensive rat IOP (CEI-20), or 2.5× IOP (CEI-50). Naïve animals that received no anesthesia or surgical interventions served as controls. Immediately after CEI, TM and ONH tissues were dissected, RNA was isolated, and samples were analyzed with a NanoString panel containing 770 genes. Postprocessing, raw count data were uploaded to ROSALIND for differential gene expression analyses. Results: For the TM, 45 IOP-related genes were significant in the CEI-50 versus CEI-20 and CEI-50 versus naïve comparisons, with 15 genes common to both comparisons. Bioinformatics analysis identified Notch and transforming growth factor beta (TGFß) pathways to be the most up- and downregulated Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, respectively. For ONH, 22 significantly differentially regulated genes were identified in the CEI-50 versus naïve comparison. Pathway analysis identified defense response and immune response as two significantly upregulated biological process pathways. Conclusions: This study demonstrated the ability to assay short-term IOP-responsive genes in both TM and ONH tissues simultaneously. In the TM, downregulation of TGFß pathway genes suggests that TM responses may reduce TGFß-induced extracellular matrix synthesis. For ONH, the initial response to short-term elevated IOP may be protective.


Subject(s)
Disease Models, Animal , Intraocular Pressure , Ocular Hypertension , Optic Disk , Trabecular Meshwork , Animals , Trabecular Meshwork/metabolism , Intraocular Pressure/physiology , Rats , Male , Female , Optic Disk/metabolism , Ocular Hypertension/genetics , Ocular Hypertension/physiopathology , Gene Expression Regulation/physiology , Gene Expression Profiling , Rats, Sprague-Dawley
2.
bioRxiv ; 2024 Feb 11.
Article in English | MEDLINE | ID: mdl-38370622

ABSTRACT

Purpose: The rat Controlled Elevation of Intraocular pressure (CEI) model allows study of in vivo responses to defined intraocular pressures (IOP). In this study, we use Nanostring technology to investigate in vivo IOP-related gene responses in the trabecular meshwork (TM) and optic nerve head (ONH) simultaneously from the same animals. Methods: Male and female rats (N=35) were subject to CEI for 8-hours at pressures simulating mean, daytime normotensive rat IOP (CEI-20), or 2.5x IOP (CEI-50). Naïve animals, receiving no anesthesia or surgical interventions, served as controls. Immediately after CEI, TM and ONH tissues were dissected, RNA isolated, and samples were analyzed with a Nanostring panel containing 770 genes. Post-processing, raw count data were uploaded to Rosalind® for differential gene expression analyses. Results: For the TM, 45 IOP-related genes were significant in the "CEI-50 vs. CEI-20" and "CEI-50 vs. naïve" comparisons, with 15 genes common to both comparisons. Bioinformatics analysis identified Notch and TGFß pathways to be the most up- and down-regulated KEGG pathways, respectively. For ONH, 22 significantly regulated genes were identified in the "CEI-50 vs. naïve" comparison. Pathway analysis identified 'defense response' and 'immune response' as two significantly upregulated biological process pathways. Conclusions: This study demonstrates the ability to assay IOP-responsive genes in both TM and ONH tissues simultaneously. In the TM, downregulation of TGFß pathway genes suggest that TM responses may prevent TGFß-induced extracellular matrix synthesis. For ONH, the initial response to elevated IOP may be protective, with astrocytes playing a key role in these gene responses.

3.
Invest Ophthalmol Vis Sci ; 64(10): 4, 2023 07 03.
Article in English | MEDLINE | ID: mdl-37405758

ABSTRACT

Purpose: To clarify the optic nerve head (ONH) gene expression responses associated with a single, axon-damaging exposure to elevated IOP in relation to the composite cellular events previously identified in models of chronically elevated IOP. Methods: Anesthetized rats were exposed unilaterally to an 8-hour pulse-train controlled elevation of IOP (PT-CEI) at 60 mm Hg, while others received normotensive CEI at 20 mm Hg. ONH RNA was harvested at 0 hours and 1, 2, 3, 7, and 10 days after either CEI and from naïve animals. RNA sequencing was performed to analyze ONH gene expression. DAVID Bioinformatics tools were used to identify significant functional annotation clusters. Gene function was compared between PT-CEI and two models of chronic ocular hypertension from the literature. Results: The number of significantly changed genes peaked immediately (n = 1354) after PT-CEI (0 hours). This was followed by a lull (<4 genes per time point) at 1 and 2 days after PT-CEI. Gene activity increased again at 3 days (136 genes) and persisted at 7 (78 genes) and 10 (339 genes) days. Significant gene functional categories included an immediate upregulation of Defense Response at 0 hours, followed by upregulation in Cell Cycle, a reduction in Axonal-related genes at 3 to 10 days, and upregulation of Immune Response-related genes at 10 days following PT-CEI. The most commonly upregulated gene expression across our PT-CEI study and two chronic models of ocular hypertension were cell cycle related. Conclusions: The PT-CEI model places in sequence ONH gene expression responses previously reported in models with chronically elevated IOP and may provide insights into their role in optic nerve damage.


Subject(s)
Glaucoma , Ocular Hypertension , Optic Disk , Rats , Animals , Optic Disk/metabolism , Intraocular Pressure , Disease Progression , Transcription, Genetic , Disease Models, Animal
4.
Exp Eye Res ; 228: 109367, 2023 03.
Article in English | MEDLINE | ID: mdl-36740159

ABSTRACT

Glaucoma is often associated with elevated intraocular pressure (IOP), generally due to obstruction of aqueous humor outflow within the trabecular meshwork (TM). Despite many decades of research, the molecular cause of this obstruction remains elusive. To study IOP regulation, several in vitro models, such as perfusion of anterior segments or mechanical stretching of TM cells, have identified several IOP-responsive genes and proteins. While these studies have proved informative, they do not fully recapitulate the in vivo environment where IOP is subject to additional factors, such as circadian rhythms. Thus, rodent animal models are now commonly used to study IOP-responsive genes in vivo. Several single-cell RNAseq studies have been performed where angle tissue, containing cornea, iris, ciliary body tissue in addition to TM, is dissected. However, it is advantageous to physically separate TM from other tissues because the ratio of TM cells is relatively low compared to the other cell types. In this report, we describe a new technique for rat TM microdissection. Evaluating tissue post-dissection by histology and immunostaining clearly shows successful removal of the TM. In addition, TaqMan PCR primers targeting biomarkers of trabecular meshwork (Myoc, Mgp, Chi3l1) or ciliary body (Myh11, Des) genes showed little contamination of TM tissue by the ciliary body. Finally, pitfalls encountered during TM microdissection are discussed to enable others to successfully perform this microsurgical technique in the rat eye.


Subject(s)
Glaucoma , Trabecular Meshwork , Rats , Animals , Trabecular Meshwork/metabolism , Microdissection , Aqueous Humor/metabolism , Glaucoma/metabolism , Iris , Intraocular Pressure
5.
Invest Ophthalmol Vis Sci ; 60(4): 921-932, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30835784

ABSTRACT

Purpose: We previously reported increased expression of cell proliferation and Jak-Stat pathway-related genes in chronic experimental glaucoma model optic nerve heads (ONH) with early, mild injury. Here, we confirm these observations by localizing, identifying, and quantifying ONH cellular proliferation and Jak-Stat pathway activation in this model. Methods: Chronic intraocular pressure (IOP) elevation was achieved via outflow pathway sclerosis. After 5 weeks, ONH longitudinal sections were immunolabeled with proliferation and cell-type markers to determine nuclear densities in the anterior (unmyelinated) and transition (partially myelinated) ONH. Nuclear pStat3 labeling was used to detect Jak-Stat pathway activation. Nuclear density differences between control ONH (uninjected) and ONH with either early or advanced injury (determined by optic nerve injury grading) were identified by ANOVA. Results: Advanced injury ONH had twice the nuclear density (P < 0.0001) of controls and significantly greater astrocyte density in anterior (P = 0.0001) and transition (P = 0.006) ONH regions. An increased optic nerve injury grade positively correlated with increased microglia/macrophage density in anterior and transition ONH (P < 0.0001, both). Oligodendroglial density was unaffected. In glaucoma model ONH, 80% of anterior and 66% of transition region proliferating cells were astrocytes. Nuclear pStat3 labeling significantly increased in early injury anterior ONH, and 95% colocalized with astrocytes. Conclusions: Astrocytes account for the majority of proliferating cells, contributing to a doubled nuclear density in advanced injury ONH. Jak-Stat pathway activation is apparent in the early injury glaucoma model ONH. These data confirm dramatic astrocyte cell proliferation and early Jak-Stat pathway activation in ONH injured by elevated IOP.


Subject(s)
Glaucoma/pathology , Janus Kinases/metabolism , Neuroglia/pathology , Optic Disk/pathology , Optic Nerve Injuries/pathology , STAT3 Transcription Factor/metabolism , Signal Transduction/physiology , Animals , Astrocytes/metabolism , Astrocytes/pathology , Biomarkers/metabolism , Cell Proliferation , Chronic Disease , Glaucoma/metabolism , Glial Fibrillary Acidic Protein/metabolism , Immunohistochemistry , Intraocular Pressure , Male , Models, Animal , Neuroglia/metabolism , Optic Disk/metabolism , Optic Nerve Injuries/metabolism , PAX2 Transcription Factor/metabolism , Rats , Rats, Inbred BN , SOXB1 Transcription Factors/metabolism , Tonometry, Ocular
6.
Invest Ophthalmol Vis Sci ; 60(1): 312-321, 2019 01 02.
Article in English | MEDLINE | ID: mdl-30665231

ABSTRACT

Purpose: Optic nerve head (ONH) astrocytes provide support for axons, but exhibit structural and functional changes (termed reactivity) in a number of glaucoma models. The purpose of this study was to determine if ONH astrocyte structural reactivity is axon-dependent. Methods: Using rats, we combine retrobulbar optic nerve transection (ONT) with acute controlled elevation of intraocular pressure (CEI), to induce total optic nerve axon loss and ONH astrocyte reactivity, respectively. Animals were euthanized immediately or 1 day post CEI, in the presence or absence of ONT. ONH sections were labeled with fluorescent-tagged phalloidin and antibodies against ß3 tubulin, phosphorylated cortactin, phosphorylated paxillin, or complement C3. ONH label intensities were quantified after confocal microscopy. Retrobulbar nerves were assessed for axon injury by light microscopy. Results: While ONT alone had no effect on ONH astrocyte structural orientation, astrocytes demonstrated significant reorganization of cellular extensions within hours after CEI, even when combined with ONT. However, ONH astrocytes displayed differential intensities of actin (phosphorylated cortactin) and focal adhesion (phosphorylated paxillin) mediators in response to CEI alone, ONT alone, or the combination of CEI and ONT. Lastly, label intensities of complement C3 within the ONH were unchanged in eyes subjected to CEI alone, ONT alone, or the combination of CEI and ONT, relative to controls. Conclusions: Early ONH astrocyte structural reactivity to elevated IOP is multifaceted, displaying both axon dependent and independent responses. These findings have important implications for pursuing astrocytes as diagnostic and therapeutic targets in neurodegenerative disorders with fluctuating levels of axon injury.


Subject(s)
Astrocytes/pathology , Axons/pathology , Disease Models, Animal , Intraocular Pressure , Ocular Hypertension/pathology , Optic Disk/pathology , Animals , Astrocytes/metabolism , Axons/metabolism , Complement C3/metabolism , Cortactin/metabolism , Male , Microscopy, Confocal , Ocular Hypertension/metabolism , Optic Disk/metabolism , Optic Nerve , Optic Nerve Injuries , Paxillin/metabolism , Phosphorylation , Rats , Rats, Inbred BN , Retinal Ganglion Cells , Tonometry, Ocular , Tubulin/metabolism
7.
Sci Rep ; 8(1): 4453, 2018 03 13.
Article in English | MEDLINE | ID: mdl-29535357

ABSTRACT

Small molecule delivery to the optic nerve would allow for exploration of molecular and cellular pathways involved in normal physiology and optic neuropathies such as glaucoma, and provide a tool for screening therapeutics in animal models. We report a novel surgical method for small molecule drug delivery to the optic nerve head (ONH) in a rodent model. In proof-of-principle experiments, we delivered cytochalasin D (Cyt D; a filamentous actin inhibitor) to the junction of the superior optic nerve and globe in rats to target the actin-rich astrocytic cytoskeleton of the ONH. Cyt D delivery was quantified by liquid chromatography and mass spectrometry of isolated optic nerve tissue. One day after Cyt D delivery, anterior ONH filamentous actin bundle content was significantly reduced as assessed by fluorescent-tagged phalloidin labeling, relative to sham delivery. Anterior ONH nuclear counts and axon-specific beta-3 tubulin levels, as well as peripapillary retinal ganglion cell layer nuclear counts were not significantly altered after Cyt D delivery relative to sham delivery. Lastly, the surgical delivery technique caused minimal observable axon degeneration up to 10 days post-surgery. This small molecule delivery technique provides a new approach to studying optic neuropathies in in vivo rodent models.


Subject(s)
Conjunctiva/surgery , Cytochalasin D/administration & dosage , Optic Nerve/chemistry , Small Molecule Libraries/administration & dosage , Animals , Chromatography, Liquid , Conjunctiva/innervation , Disease Models, Animal , Mass Spectrometry , Models, Animal , Ophthalmologic Surgical Procedures , Optic Nerve Diseases/drug therapy , Rats
8.
Methods Mol Biol ; 1695: 11-21, 2018.
Article in English | MEDLINE | ID: mdl-29190014

ABSTRACT

A reliable method of creating chronic elevation of intraocular pressure (IOP) in rodents is an important tool in reproducing and studying the mechanisms of optic nerve injury that occur in glaucoma. In addition, such a model could provide a valuable method for testing potential neuroprotective treatments. This paper outlines the basic methods for producing obstruction of aqueous humor outflow and IOP elevation by injecting hypertonic saline (a sclerosant) into the aqueous outflow pathway. This is one of several rodent glaucoma models in use today. In this method, a plastic ring is placed around the equator of the eye to restrict injected saline to the limbus. By inserting a small glass microneedle in an aqueous outflow vein in the episclera and injecting hypertonic saline toward the limbus, the saline is forced into Schlemm's canal and across the trabecular meshwork. The resultant inflammation and scarring of the anterior chamber angle occurs gradually, resulting in a rise in IOP after approximately 1 week. This article will describe the equipment necessary for producing this model and the steps of the technique itself.


Subject(s)
Glaucoma/etiology , Ocular Hypertension/chemically induced , Saline Solution, Hypertonic/administration & dosage , Animals , Aqueous Humor/chemistry , Disease Models, Animal , Glaucoma/physiopathology , Humans , Injections, Intraocular/instrumentation , Ocular Hypertension/complications , Rats , Saline Solution, Hypertonic/adverse effects
10.
Invest Ophthalmol Vis Sci ; 58(7): 2884-2890, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28586912

ABSTRACT

Purpose: MicroRNAs (miRNAs) are small, endogenous noncoding RNAs that have been detected in human aqueous humor (AH). Prior studies have pooled samples to obtain sufficient quantities for analysis or used next-generation sequencing. Here, we used PCR arrays with preamplification to identify and compare miRNAs from individual AH samples between patients with primary open-angle glaucoma (POAG) and normal controls. Methods: AH was collected before cataract surgery from six stable, medically treated POAG patients and eight age-matched controls. Following reverse transcription and preamplification, individual patient samples were profiled on Taqman Low Density MicroRNA Array Cards. Differentially expressed miRNAs were stratified for fold changes larger than ±2 and for significance of P < 0.05. Significant Kyoto Encyclopedia of Genes and Genomes pathways influenced by the differentially expressed miRNAs were identified using the predicted target module of the miRWalk 2.0 database. Results: This approach detected 181 discrete miRNAs, which were consistently expressed across all samples of both experimental groups. Significant up-regulation of miR-518d and miR-143, and significant down-regulation of miR-660, was observed in the AH of POAG patients compared with controls. These miRNAs were predicted to reduce cell proliferation and extracellular matrix remodeling, endocytosis, Wnt signaling, ubiquitin-mediated proteolysis, and adherens junction function. Conclusions: This pilot study demonstrates that miRNA expression within the AH of POAG patients differs from age-matched controls. AH miRNAs exhibit potential as biomarkers of POAG, which merits further investigation in a larger case-controlled study. This technique provides a cost-effective and sensitive approach to assay miRNAs in individual patient samples without the need for pooling.


Subject(s)
Aqueous Humor/metabolism , Gene Expression Regulation , Glaucoma, Open-Angle/genetics , MicroRNAs/genetics , Reverse Transcriptase Polymerase Chain Reaction/methods , Aged , Female , Glaucoma, Open-Angle/metabolism , Humans , Male , MicroRNAs/biosynthesis , Middle Aged , Pilot Projects , Reproducibility of Results
11.
Invest Ophthalmol Vis Sci ; 57(15): 6700-6711, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27942722

ABSTRACT

Purpose: We determine if several hours of controlled elevation of IOP (CEI) will produce the optic nerve head (ONH) gene expression changes and optic nerve (ON) damage pattern associated with early experimental glaucoma in rats. Methods: The anterior chambers of anesthetized rats were cannulated and connected to a reservoir to elevate IOP. Physiologic parameters were monitored. Following CEI at various recovery times, ON cross-sections were graded for axonal injury. Anterior ONHs were collected at 0 hours to 10 days following CEI and RNA extracted for quantitative PCR measurement of selected messages. The functional impact of CEI was assessed by electroretinography (ERG). Results: During CEI, mean arterial pressure (99 ± 6 mm Hg) and other physiologic parameters remained stable. An 8-hour CEI at 60 mm Hg produced significant focal axonal degeneration 10 days after exposure, with superior lesions in 83% of ON. Message analysis in CEI ONH demonstrated expression responses previously identified in minimally injured ONH following chronic IOP elevation, as well as their sequential patterns. Anesthesia with cannulation at 20 mm Hg did not alter these message levels. Electroretinographic A- and B-waves, following a significant reduction at 2 days after CEI, were fully recovered at 2 weeks, while peak scotopic threshold response (pSTR) remained mildly but significantly depressed. Conclusions: A single CEI reproduces ONH message changes and patterns of ON injury previously observed with chronic IOP elevation. Controlled elevation of IOP can allow detailed determination of ONH cellular and functional responses to an injurious IOP insult and provide a platform for developing future therapeutic interventions.


Subject(s)
Cell Cycle Proteins/genetics , Gene Expression Regulation , Glaucoma/genetics , Intraocular Pressure/physiology , Optic Disk/metabolism , RNA/genetics , Animals , Cell Cycle Proteins/biosynthesis , Disease Models, Animal , Electroretinography , Follow-Up Studies , Glaucoma/metabolism , Glaucoma/physiopathology , Male , Optic Disk/diagnostic imaging , Rats , Rats, Inbred BN , Real-Time Polymerase Chain Reaction
12.
PLoS One ; 11(11): e0167364, 2016.
Article in English | MEDLINE | ID: mdl-27893827

ABSTRACT

Glaucomatous axon injury occurs at the level of the optic nerve head (ONH) in response to uncontrolled intraocular pressure (IOP). The temporal response of ONH astrocytes (glial cells responsible for axonal support) to elevated IOP remains unknown. Here, we evaluate the response of actin-based astrocyte extensions and integrin-based signaling within the ONH to 8 hours of IOP elevation in a rat model. IOP elevation of 60 mm Hg was achieved under isoflurane anesthesia using anterior chamber cannulation connected to a saline reservoir. ONH astrocytic extension orientation was significantly and regionally rearranged immediately after IOP elevation (inferior ONH, 43.2° ± 13.3° with respect to the anterior-posterior axis versus 84.1° ± 1.3° in controls, p<0.05), and re-orientated back to baseline orientation 1 day post IOP normalization. ONH axonal microtubule filament label intensity was significantly reduced 1 and 3 days post IOP normalization, and returned to control levels on day 5. Phosphorylated focal adhesion kinase (FAK) levels steadily decreased after IOP normalization, while levels of phosphorylated paxillin (a downstream target of FAK involved in focal adhesion dynamics) were significantly elevated 5 days post IOP normalization. The levels of phosphorylated cortactin (a downstream target of Src kinase involved in actin polymerization) were significantly elevated 1 and 3 days post IOP normalization and returned to control levels by day 5. No significant axon degeneration was noted by morphologic assessment up to 5 days post IOP normalization. Actin-based astrocyte structure and signaling within the ONH are significantly altered within hours after IOP elevation and prior to axonal cytoskeletal rearrangement, producing some responses that recover rapidly and others that persist for days despite IOP normalization.


Subject(s)
Astrocytes/pathology , Axonal Transport , Cytoskeleton/pathology , Disease Models, Animal , Ocular Hypertension/pathology , Optic Nerve/pathology , Tubulin/metabolism , Actins/metabolism , Animals , Astrocytes/metabolism , Cytoskeleton/metabolism , Intraocular Pressure , Male , Ocular Hypertension/metabolism , Optic Nerve/metabolism , Rats , Rats, Inbred BN , Tubulin/chemistry
13.
Exp Eye Res ; 145: 173-186, 2016 04.
Article in English | MEDLINE | ID: mdl-26500195

ABSTRACT

PURPOSE: To characterize early optic nerve head (ONH) structural change in rat experimental glaucoma (EG). METHODS: Unilateral intraocular pressure (IOP) elevation was induced in Brown Norway rats by hypertonic saline injection into the episcleral veins and animals were sacrificed 4 weeks later by perfusion fixation. Optic nerve cross-sections were graded from 1 (normal) to 5 (extensive injury) by 5 masked observers. ONHs with peripapillary retina and sclera were embedded, serial sectioned, 3-D reconstructed, delineated, and quantified. Overall and animal-specific EG versus Control eye ONH parameter differences were assessed globally and regionally by linear mixed effect models with significance criteria adjusted for multiple comparisons. RESULTS: Expansions of the optic nerve and surrounding anterior scleral canal opening achieved statistical significance overall (p < 0.0022), and in 7 of 8 EG eyes (p < 0.005). In at least 5 EG eyes, significant expansions (p < 0.005) in Bruch's membrane opening (BMO) (range 3-10%), the anterior and posterior scleral canal openings (8-21% and 5-21%, respectively), and the optic nerve at the anterior and posterior scleral canal openings (11-30% and 8-41%, respectively) were detected. Optic nerve expansion was greatest within the superior and inferior quadrants. Optic nerve expansion at the posterior scleral canal opening was significantly correlated to optic nerve damage (R = 0.768, p = 0.042). CONCLUSION: In the rat ONH, the optic nerve and surrounding BMO and neurovascular scleral canal expand early in their response to chronic experimental IOP elevation. These findings provide phenotypic landmarks and imaging targets for detecting the development of experimental glaucomatous optic neuropathy in the rat eye.


Subject(s)
Glaucoma/pathology , Neural Tube/pathology , Optic Disk/pathology , Sclera/pathology , Animals , Bruch Membrane/pathology , Disease Models, Animal , Glaucoma/etiology , Male , Rats , Saline Solution, Hypertonic
14.
Exp Eye Res ; 139: 1-12, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26021973

ABSTRACT

The purpose of this study is to three-dimensionally (3D) characterize the principal macroscopic and microscopic relationships within the rat optic nerve head (ONH) and quantify them in normal control eyes. Perfusion-fixed, trephinated ONH from 8 normal control eyes of 8 Brown Norway Rats were 3D histomorphometrically reconstructed, visualized, delineated and parameterized. The rat ONH consists of 2 scleral openings, (a superior neurovascular and inferior arterial) separated by a thin connective tissue strip we have termed the "scleral sling". Within the superior opening, the nerve abuts a prominent extension of Bruch's Membrane (BM) superiorly and is surrounded by a vascular plexus, as it passes through the sclera, that is a continuous from the choroid into and through the dural sheath and contains the central retinal vein (CRV), (inferiorly). The inferior scleral opening contains the central retinal artery and three long posterior ciliary arteries which obliquely pass through the sclera to obtain the choroid. Bruch's Membrane Opening (BMO) is irregular and vertically elongated, enclosing the nerve (superiorly) and CRV and CRA (inferiorly). Overall mean BMO Depth, BMO Area, Choroidal Thickness and peripapillary Scleral Thickness were 29 µm, 56.5 × 10(3) µm(2), 57 µm and 104 µm respectively. Mean anterior scleral canal opening (ASCO) and posterior scleral canal opening (PSCO) radii were 201 ± 15 µm and 204 ± 16 µm, respectively. Mean optic nerve area at the ASCO and PSCO were 46.3 × 10(3)±4.4 × 10(3) µm(2) and 44.1 × 10(3)±4.5 × 10(3) µm(2) respectively. In conclusion, the 3D complexity of the rat ONH and the extent to which it differs from the primate have been under-appreciated within previous 2D studies. Properly understood, these anatomic differences may provide new insights into the relative susceptibilities of the rat and primate ONH to elevated intraocular pressure.


Subject(s)
Imaging, Three-Dimensional , Optic Disk/ultrastructure , Animals , Male , Microscopy, Electron/methods , Rats , Rats, Inbred BN , Reference Values
15.
Exp Eye Res ; 141: 23-32, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26003399

ABSTRACT

Injection of hypertonic saline via episcleral veins toward the limbus in laboratory rats can produce elevated intraocular pressure (IOP) by sclerosis of aqueous humor outflow pathways. This article describes important anatomic characteristics of the rat optic nerve head (ONH) that make it an attractive animal model for human glaucoma, along with the anatomy of rat aqueous humor outflow on which this technique is based. The injection technique itself is also described, with the aid of a supplemental movie, including necessary equipment and specific tips to acquire this skill. Outcomes of a successful injection are presented, including IOP elevation and patterns of optic nerve injury. These concepts are then specifically considered in light of the use of this model to assess potential neuroprotective therapies. Advantages of the hypertonic saline model include a delayed and relatively gradual IOP elevation, likely reproduction of scleral and ONH stresses and strains that may be important in producing axonal injury, and its ability to be applied to any rat (and potentially mouse) strain, leaving the unmanipulated fellow eye as an internal control. Challenges include the demanding surgical skill required by the technique itself, a wide range of IOP response, and mild corneal clouding in some animals. However, meticulous application of the principles detailed in this article and practice will allow most researchers to attain this useful skill for studying cellular events of glaucomatous optic nerve damage.


Subject(s)
Aqueous Humor/metabolism , Glaucoma/etiology , Intraocular Pressure/physiology , Animals , Disease Models, Animal , Glaucoma/metabolism , Glaucoma/physiopathology , Humans , Rats , Saline Solution, Hypertonic/toxicity
16.
Invest Ophthalmol Vis Sci ; 56(13): 7971-82, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26720444

ABSTRACT

PURPOSE: MicroRNAs are small, endogenous noncoding RNAs that modulate posttranscriptional gene expression. Although the contribution of microRNAs to the pathogenesis of glaucomatous damage is unknown, supporting evidence from central nervous system (CNS) research suggests they may play a role. It was therefore hypothesized that microRNAs known to be altered in CNS injury are also altered in experimental glaucoma. METHODS: Intraocular pressure (IOP) was elevated in rats by unilateral injection of hypertonic saline and IOP monitored for 5 weeks. After rats were killed, retrobulbar optic nerve sections were graded for damage. MicroRNA was extracted from whole retinae of eyes with advanced nerve damage (n = 8) and from normal, noninjected control eyes (n = 8). Quantitative PCRs were performed using a panel of 17 microRNAs, reported from CNS research to be implicated in mechanisms also linked to glaucomatous damage. Computationally and experimentally derived gene targets were identified for the differentially expressed microRNAs. These were then integrated with existing gene array data. Functional interpretation was performed using the Molecular Signatures Database and DAVID Functional Annotation Clustering. RESULTS: Eight microRNAs were significantly downregulated in glaucomatous retinae compared with controls (miR-181c, miR-497, miR-204, let-7a, miR-29b, miR-16, miR106b, and miR-25); miR-27a was significantly upregulated. Enrichment of targets associated with extracellular matrix/cell proliferation, immune system, and regulation of apoptosis were observed. Cholesterol homeostasis and mTORC-1 pathways showed reduced expression. CONCLUSIONS: MicroRNAs are differentially expressed in retinae of eyes with advanced glaucomatous damage compared with normal controls. Integrating microRNA with gene expression data may improve understanding of the complex biological responses produced by chronically elevated IOP.


Subject(s)
Glaucoma/metabolism , MicroRNAs/metabolism , Animals , Disease Models, Animal , Glaucoma/genetics , Male , Polymerase Chain Reaction/methods , Rats , Retina/metabolism , Retinal Ganglion Cells/metabolism
17.
Invest Ophthalmol Vis Sci ; 56(1): 412-9, 2014 Dec 18.
Article in English | MEDLINE | ID: mdl-25525172

ABSTRACT

PURPOSE: Optic nerve injury has been found to be dramatically reduced in a genetic mouse glaucoma model following exposure to sublethal, head-only irradiation. In this study, the same radiation treatment was used prior to experimental induction of elevated intraocular pressure (IOP) to determine if radiation is neuroprotective in another glaucoma model. METHODS: Episcleral vein injection of hypertonic saline was used to elevate IOP unilaterally in two groups of rats: (1) otherwise untreated and (2) radiation pretreated, n > 25/group. Intraocular pressure histories were collected for 5 weeks, when optic nerves were prepared and graded for injury. Statistical analyses were used to compare IOP history and nerve injury. The density of microglia and macrophages in two nerve head regions was determined by Iba1 immunolabeling. RESULTS: Mean and peak IOP elevations were not different between the two glaucoma model groups. Mean optic nerve injury grades were not different in glaucoma model optic nerves and were equivalent to approximately 35% of axons degenerating. Nerves selected for lower mean or peak IOP elevations did not differ in optic nerve injury. Similarly, nerves selected for lower injury grade did not differ in IOP exposure. By multiple regression modeling, nerve injury grade was most significantly associated with mean IOP (P < 0.002). There was no significant effect of radiation treatment. Iba1+ cell density was not altered by radiation treatment. CONCLUSIONS: In contrast to previous observations in a mouse genetic glaucoma model, head-only irradiation offers the adult rat optic nerve no protection from optic nerve degeneration due to chronic, experimentally induced IOP elevation.


Subject(s)
Glaucoma/radiotherapy , Intraocular Pressure/physiology , Optic Nerve Diseases/prevention & control , Optic Nerve/radiation effects , Animals , Cell Count , Disease Models, Animal , Glaucoma/complications , Glaucoma/physiopathology , Male , Optic Nerve/pathology , Optic Nerve Diseases/etiology , Optic Nerve Diseases/pathology , Rats , Rats, Inbred BN , Retinal Ganglion Cells/pathology , Retinal Ganglion Cells/radiation effects , Tonometry, Ocular
18.
Invest Ophthalmol Vis Sci ; 55(10): 6945-52, 2014 Sep 25.
Article in English | MEDLINE | ID: mdl-25257054

ABSTRACT

PURPOSE: To determine if astrocyte processes label for actin and to quantify the orientation of astrocytic processes within the optic nerve head (ONH) in a rat glaucoma model. METHODS: Chronic intraocular pressure (IOP) elevation was produced by episcleral hypertonic saline injection and tissues were collected after 5 weeks. For comparison, eyes with optic nerve transection were collected at 2 weeks. Fellow eyes served as controls. Axonal degeneration in retrobulbar optic nerves was graded on a scale of 1 to 5. Optic nerve head sections (n ≥ 4 eyes per group) were colabeled with phalloidin (actin marker) and antibodies to astrocytic glial fibrillary acidic protein and aquaporin 4, or axonal tubulin ßIII. Confocal microscopy and FIJI software were used to quantify the orientation of actin bundles. RESULTS: Control ONHs showed stereotypically arranged actin bundles within astrocyte processes. Optic nerve head actin bundle orientation was nearly perpendicular to axons (82.9° ± 6.3° relative to axonal axis), unlike the retrobulbar optic nerve (45.4° ± 28.7°, P < 0.05). With IOP elevation, ONH actin bundle orientation became less perpendicular to axons, even in eyes with no perceivable axonal injury (i.e., 38.8° ± 15.1° in grade 1, P < 0.05 in comparison to control ONHs). With severe injury, ONH actin bundle orientation became more parallel to the axonal axis (24.1° ± 28.4°, P < 0.05 in comparison to control ONHs). Optic nerve head actin bundle orientation in transected optic nerves was unchanged. CONCLUSIONS: Actin labeling identifies fine astrocyte processes within the ONH. Optic nerve head astrocyte process reorientation occurs early in response to elevated IOP.


Subject(s)
Actins/metabolism , Astrocytes/pathology , Glaucoma/pathology , Intraocular Pressure/physiology , Optic Disk/pathology , Animals , Astrocytes/metabolism , Disease Models, Animal , Follow-Up Studies , Glaucoma/metabolism , Glaucoma/physiopathology , Microscopy, Confocal , Optic Disk/metabolism , Rats , Time Factors
19.
Biomed Opt Express ; 3(9): 2220-33, 2012 Sep 01.
Article in English | MEDLINE | ID: mdl-23024915

ABSTRACT

In this paper, we demonstrate the use of optical coherence tomography/optical microangiography (OCT/OMAG) to image and measure the effects of acute intraocular pressure (IOP) elevation on retinal, choroidal and optic nerve head (ONH) perfusion in the rat eye. In the experiments, IOP was elevated from 10 to 100 mmHg in 10 mmHg increments. At each IOP level, three-dimensional data volumes were captured using an ultrahigh sensitive (UHS) OMAG scanning protocol for 3D volumetric perfusion imaging, followed by repeated B-scans for Doppler OMAG analysis to determine blood flow velocity. Velocity and vessel diameter measurements were used to calculate blood flow in selected retinal blood vessels. Choroidal perfusion was calculated by determining the peripapillary choroidal filling at each pressure level and calculating this as a percentage of area filling at baseline (10 mmHg). ONH blood perfusion was calculated as the percentage of blood flow area over a segmented ONH area to a depth 150 microns posterior to the choroidal opening. We show that volumetric blood flow reconstructions revealed detailed 3D maps, to the capillary level, of the retinal, choroidal and ONH microvasculature, revealing retinal arterioles, capillaries and veins, the choroidal opening and a consistent presence of the central retinal artery inferior to the ONH. While OCT structural images revealed a reversible compression of the ONH and vasculature with elevated IOP, OMAG successfully documented changes in retinal, choroidal and ONH blood perfusion and allowed quantitative measurements of these changes. Starting from 30 mm Hg, retinal blood flow (RBF) diminished linearly with increasing IOP and was nearly extinguished at 100 mm Hg, with full recovery after return of IOP to baseline. Choroidal filling was unaffected until IOP reached 60 mmHg, then decreased to 20% of baseline at IOP 100 mmHg, and normalized when IOP returned to baseline. A reduction in ONH blood perfusion at higher IOP's was also observed, but shadow from overlying retinal vessels at lower IOP's limited precise measurements of changes in ONH capillary perfusion compared to baseline. Therefore, OCT/OMAG can be a useful tool to image and measure blood flow in the retina, choroidal and ONH of the rat eye as well as document the effects of elevated IOP on blood flow in these vascular beds.

20.
Invest Ophthalmol Vis Sci ; 52(1): 504-18, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20847120

ABSTRACT

PURPOSE: In glaucoma, the optic nerve head (ONH) is the principal site of initial axonal injury, and elevated intraocular pressure (IOP) is the predominant risk factor. However, the initial responses of the ONH to elevated IOP are unknown. Here the authors use a rat glaucoma model to characterize ONH gene expression changes associated with early optic nerve injury. METHODS: Unilateral IOP elevation was produced in rats by episcleral vein injection of hypertonic saline. ONH mRNA was extracted, and retrobulbar optic nerve cross-sections were graded for axonal degeneration. Gene expression was determined by microarray and quantitative PCR (QPCR) analysis. Significantly altered gene expression was determined by multiclass analysis and ANOVA. DAVID gene ontology determined the functional categories of significantly affected genes. RESULTS: The Early Injury group consisted of ONH from eyes with <15% axon degeneration. By array analysis, 877 genes were significantly regulated in this group. The most significant upregulated gene categories were cell cycle, cytoskeleton, and immune system process, whereas the downregulated categories included glucose and lipid metabolism. QPCR confirmed the upregulation of cell cycle-associated genes and leukemia inhibitory factor (Lif) and revealed alterations in expression of other IL-6-type cytokines and Jak-Stat signaling pathway components, including increased expression of IL-6 (1553%). In contrast, astrocytic glial fibrillary acidic protein (Gfap) message levels were unaltered, and other astrocytic markers were significantly downregulated. Microglial activation and vascular-associated gene responses were identified. CONCLUSIONS: Cell proliferation and IL-6-type cytokine gene expression, rather than astrocyte hypertrophy, characterize early pressure-induced ONH injury.


Subject(s)
Cell Proliferation , Gene Expression Regulation/physiology , Glaucoma/genetics , Interleukin-6/genetics , Optic Disk/metabolism , Optic Nerve Injuries/genetics , Signal Transduction/physiology , Animals , Axons/metabolism , Axons/pathology , Disease Models, Animal , Glaucoma/pathology , Intraocular Pressure , Male , Microarray Analysis , Nerve Degeneration/genetics , Nerve Degeneration/pathology , Optic Disk/pathology , Optic Nerve Injuries/pathology , Polymerase Chain Reaction , RNA, Messenger/genetics , Rats , Rats, Inbred BN
SELECTION OF CITATIONS
SEARCH DETAIL
...