Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Environ Sci Pollut Res Int ; 31(6): 9713-9731, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38194174

ABSTRACT

Indoor pollution and deposition dust (DD), in particular, are acquiring concern, due to long exposure time and importance of intake by humans through contact and ingestion. Hospitals look a special category of sites, owing to peculiar contaminants affecting them and to presence of people prone to adverse effects induced by toxicants. Four in-field campaigns aimed at understanding the chemical composition of DD were performed in five Italian hospitals. Measurements were performed before (autumn 2019), during (spring 2021), and after (winter 2022) the peak of SARS-CoV2 and when restrictions caused by pandemic were revoked (winter 2023). Parallel measurements were made outdoors (2022), as well as in a university and a dwelling. Targeted contaminants were n-alkanes and polycyclic aromatic hydrocarbons (PAHs), while iso- and anteiso-alkanes were analyzed to assess the impact of tobacco smoking. Total n-alkanes ranged from 3.9 ± 2.3 to 20.5 ± 4.2 mg/g, with higher percentages of short chain homologs in 2019. PAHs ranged from 0.24 ± 0.22 to 0.83 ± 0.50 mg/g, with light congeners (≤ 228 a.m.u.) always exceeding the heavy ones (≥ 252 a.m.u.). According to carbon preference indexes, alkanes originated overall from anthropogenic sources. Microorganisms resulted to affect a hospital, and tobacco smoke accounted for ~ 4-20‰ of DD mass. As for PAH sources, the diagnostic concentration ratios suggested the concourse of biological matter burning and vehicle emission. Benzo[a]pyrene equivalent carcinogenic and mutagenic potencies of depositions at hospitals ranged ~ 9-39 µg/g and ~ 15-76 µg/g, respectively, which seems of concern for health. DD composition in hospitals was different from that outside the premises, as well as that found at university and at dwelling.


Subject(s)
COVID-19 , Polycyclic Aromatic Hydrocarbons , Humans , Polycyclic Aromatic Hydrocarbons/analysis , Alkanes/analysis , Environmental Monitoring/methods , RNA, Viral , Pandemics , SARS-CoV-2 , Hazardous Substances , Dust
2.
Sci Total Environ ; 894: 165089, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37355117

ABSTRACT

Wastewater treatment plants are known to be relevant input sources of per- and polyfluoroalkyl substances (PFAS) in the aquatic environment. This study aimed to investigate the occurrence, fate, and seasonal variability of twenty-five PFAS in four municipal wastewater treatment plants (WWTP A, B, C, and D) surrounding the city of Milan (Northern, Italy). Composite 24-h wastewater samples were collected in July and October 2021 and May and February 2022 from influents and effluents of the four WWTPs. PFAS were detected at concentrations ranging between 24.1 and 66.9 µg L-1 for influent and 13.4 and 107 µg L-1 for effluent wastewater samples. Perfluoropentanoic acid was the most abundant (1.91-30.0 µg L-1) in influent samples, whereas perfluorobutane sulfonic acid predominated (0.80-66.1 µg L-1) in effluent samples. In sludge, PFOA was detected in plant A at concentrations in the range of 96.6-165 ng kg-1 dw in primary sludge samples and 98.6-440 ng kg-1 dw in secondary treatment sludge samples. The removal efficiency of total PFAS varied between 6 % and 96 %. However, an increase of PFAS concentrations was observed from influents to effluents for plant D (during July and October), plant A (during October and May), and plant C (during May) indicating that biotransformation of PFAS precursors can occur during biological treatments. This was supported by the observed increase in concentrations of PFOA from primary to secondary treatment sludge samples in plant A. Moreover, the plant operating at shorter hydraulic retention times (plant D) showed lower removal efficiency (<45 %). Seasonal variation of PFAS in influent and effluent appears rather low and more likely due to pulse release instead of seasonal factors.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Water Purification , Wastewater , Sewage , Water Pollutants, Chemical/analysis , Environmental Monitoring , Fluorocarbons/analysis
3.
Environ Sci Pollut Res Int ; 30(24): 65192-65203, 2023 May.
Article in English | MEDLINE | ID: mdl-37079234

ABSTRACT

Polychlorodibenzo-p-dioxins (PCDDs), polychlorodibenzofurans (PCDFs), and polychlorobiphenyls (PCBs) are semi-volatile compounds and can be partitioned in the atmosphere between the gas and particulate phase, due to their physicochemical properties. For this reason, the reference standard methods for air sampling include a quartz fiber filter (QFF) for the particulate and a polyurethane foam (PUF) cartridge for the vapor phase, and it is the classical and most popular sampling method in the air. Despite the presence of the two adsorbing media, this method cannot be used for the study of the gas-particulate distribution, but only for a total quantification. This study presents the results and the performance aim to validate an activated carbon fiber (ACF) filter for the sampling of PCDD/Fs and dioxin-like PCBs (dl-PCBs) using laboratory and field tests. The specificity, precision, and accuracy of the ACF in relation to the QFF + PUF were evaluated through the isotopic dilution technique, the recovery rates, and the standard deviations. Then the ACF performance was assessed on real samples, in a naturally contaminated area, through parallel sampling with the reference method (QFF + PUF). The QA/QC was defined according to the standard methods ISO 16000-13 and -14 and EPA TO4A and 9A. Data confirmed that ACF meets the requirements for the quantification of native POPs compounds in atmospheric and indoor samples. In addition, ACF provided accuracy and precision comparable to those offered by standard reference methods using QFF + PUF, but with significant savings in terms of time and costs.


Subject(s)
Dioxins , Polychlorinated Biphenyls , Polychlorinated Dibenzodioxins , Polychlorinated Dibenzodioxins/analysis , Polychlorinated Biphenyls/analysis , Charcoal/analysis , Dibenzofurans/analysis , Carbon Fiber , Dioxins/analysis , Dust/analysis , Dibenzofurans, Polychlorinated/analysis , Environmental Monitoring/methods
4.
Data Brief ; 42: 108136, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35479420

ABSTRACT

This paper would like to show all the data related to an intensive field campaign focused on the characterization of the Polyaromatic Hydrocarbons (PAHs) composition profile in almost 60 honey samples collected in Central Italy. The analytical data here reported are the base for a study aimed to identify the pollution sources in a region. 22 PAHs were analyzed by means of ultrasound-vortex-assisted dispersive liquid-liquid micro-extraction (DLLME) procedure followed by a triple quadrupole gas chromatograph/mass spectrometer (GC-MS). A chemometrics approach has been carried out for evaluating all the data: in particular, principal component analysis and cluster analysis has been used both for the identification of the main natural/anthropogenic pollutants affecting a site and for evaluating the air quality.

5.
Food Chem ; 382: 132361, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35152011

ABSTRACT

The quality of honey is assessed through the determination of some commodity parameters: a certain importance is to be attributed to the absence of contaminating residues, in particular of Polycyclic Aromatic Hydrocarbons (PAHs). This paper deeply investigates the presence of 22 PAHs in 57 honey samples collected in Central Italy and identifies the possible source apportionment and fingerprint identification by DLLME-GC-MS analysis and a chemometric approach. Cluster Analysis and Principal Component Analysis have allowed to identify the main PAHs responsible of the contamination, benzo[a]anthracene and phenanthrene, characteristics pollutants of areas constantly exposed. The entire database has been compared to similar ones present in literature, particularly data from Serbia and Belgrado samples. The PCA applied to overall the data confirms the combustion to be the main contamination source in Italian samples whereas highlights the importance of the role of naphthalene, added during beekeeping practices in the other data-set.


Subject(s)
Environmental Pollutants , Honey , Polycyclic Aromatic Hydrocarbons , Chemometrics , China , Environmental Monitoring , Environmental Pollutants/analysis , Honey/analysis , Polycyclic Aromatic Hydrocarbons/analysis
6.
Sci Total Environ ; 806(Pt 4): 150972, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34656584

ABSTRACT

The environmental occurrence of phthalates (PAE) is of great concern for the ecosystem and human health. Despite of their recognized toxicity on biota, a lack of knowledge is still present about the effects of PAE on plants. In this scenario, the effects of dimethyl phthalate (DMP) on duckweed plants (Lemna minor L. and Spirodela polyrhiza (L.) Schleid.), two model plant species for ecotoxicological and trophic studies, were investigated. Under a 7-day lab assay, morphological (biometric indicators), physiological (pigment content and photosynthetic performance) and molecular (DNA damage) parameters were studied. No effects were observed at growth and physiological level in both plants at 3 and 30 mg/L DMP. On the contrary, at 600 mg/L DMP, a concentration used for plant acute toxicity studies, a remarkable growth inhibition and pigment content and photosynthetic parameters reduction compared to control were observed in both plants species, particularly in Spirodela. Alkaline Comet assay in 24 h-treated plants revealed a genotoxic damage induced by DMP, particularly relevant in Spirodela. These results described for the first time the adverse effects exerted by DMP on aquatic plants, contributing to highlight the environmental risk associated to the presence of this compound in the aquatic ecosystem.


Subject(s)
Araceae , Water Pollutants, Chemical , DNA Damage , Ecosystem , Humans , Laboratories , Phthalic Acids , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
7.
Molecules ; 26(21)2021 Oct 23.
Article in English | MEDLINE | ID: mdl-34770816

ABSTRACT

Active carbon-based sorbents are well known and are used in analytical chemistry. Activated carbon fibers (ACFs) are mainly used as abatement systems in industrial emission pollution control. The objective of this study was to extend the use of ACFs in analytical chemistry for the analysis of polychlorodibenzo-p-dioxins (PCDDs), polychlorodibenzofurans (PCDFs), dioxin-like polychlorobiphenyls (PCBs), and chlorobenzenes (CBs). For this purpose, the extraction efficiency was evaluated based on the QA/QC criteria defined by EPA/ISO reference methods on 13C-standards recovery rates. The procedures tested were ultrasonic assisted extraction (UAE), Soxhlet extraction (SE), accelerated solvent extraction (ASE), and microwave-assisted extraction (MAE). Each experiment was performed in triplicate to ensure the repeatability of the results, and a second extraction assessed the complete extraction. The comparison of the results of each set of experiments with the minimum requirements of the reference methods for each class of compounds led to SE being chosen as the best technique. SE with toluene resulted in a reduction of time and costs and with respect to the other investigated techniques. The present work demonstrated that ACFs can be used in environmental fields means of both prevention and control (exploiting the adsorbent characteristics) and for analytical purposes (exploiting the desorption) for the described chlorinated classes of pollutants.

8.
Polymers (Basel) ; 13(21)2021 Oct 23.
Article in English | MEDLINE | ID: mdl-34771215

ABSTRACT

Nanoplastics (NPs) are considered emerging pollutants, namely unregulated contaminants whose toxic effect on humans and the environment has been demonstrated or suspected. They are the result of the physical fragmentation of the plastics that over time reach smaller dimensions (<100 nm). The issues related to the characterization and quantification of NPs in the environmental matrices are mainly related to the infinitepsimal size, to the fact that they are found in bulk, and to the different physico-chemical forms in which the same polymer can evolve over time by degradation. To deal with the study of a new class of pollutants it is necessary to assess the entire analytical method, carefully considering every single step (sampling, cleanup, qualitative, and quantitative analysis) starting from the validation method in the laboratory. This paper reviews the analytical method steps, focusing on the first ones, which the current literature often underestimates: laboratory tests, sampling, and sample processing; in fact, most errors and the quality of the analyses often depend on them. In addition, all newly introduced sample processing methods were examined.

9.
Arch Toxicol ; 94(7): 2359-2375, 2020 07.
Article in English | MEDLINE | ID: mdl-32472170

ABSTRACT

Since tattoos became overwhelmingly fashionable worldwide, the demand for removal has proportionally increased, Nd:YAG Q-switch laser being the most commonly used tool for the purpose. In this framework we investigated the composition and products of laser treatment of green tattoo ink, the Green Concentrate from Eternal. The ink characterization has been carried out by IR, UV-Vis, EDX spectroscopies, and SEM imaging. It revealed the presence of the pigment PG7, rather than PG36 as reported on the bottle label, along with non-fully halogenated analogues. The morphology is an extended sheath with embedded grains. Subsequent laser treatments were performed on both dried and extracted inks, dispersed either in water or in propan-2-ol, chosen for their different polarities, as it is the case in the skin layers. The products were analyzed by gas chromatography-mass spectrometry, UV-Vis spectroscopy, SEM imaging, and dynamic light scattering. The outcome is a complex fragmentation pattern that depends both on the solvent and on the initial aggregation state. The fragment compounds are toxic at various degrees according to the Classification Labelling and Packaging regulations. Several shapes of aggregates are produced as an effect of both downsizing and re-aggregation, with potentially harmful aspect ratios.


Subject(s)
Coloring Agents/radiation effects , Coloring Agents/toxicity , Indoles/radiation effects , Indoles/toxicity , Ink , Laser Therapy/adverse effects , Lasers, Solid-State/adverse effects , Tattooing , Consumer Product Safety , Dynamic Light Scattering , Gas Chromatography-Mass Spectrometry , Humans , Laser Therapy/instrumentation , Microscopy, Electron, Scanning , Risk Assessment , Spectrophotometry, Ultraviolet
10.
J Hazard Mater ; 393: 122284, 2020 Jul 05.
Article in English | MEDLINE | ID: mdl-32120222

ABSTRACT

It is known that when fires or explosions involve electrical systems, along with PCDDs and PCDFs, polychlorinated biphenylenes (PCBPs) are also produced. These chlorinated tricyclic aromatic pollutants were noticed in fire rubbles and after the World Trade Center destruction. However, the analytical difficulties in developing an efficient method have limited the knowledge of their environmental distribution. In light of the equipotency of 2,3,6,7-TeCBP and 2,3,7,8-TeCDD, PCBPs call for more accurate investigations. In this paper, for the first time, the level and persistence of 2,3,6,7-TeCBP have been investigated in air samples (both indoor and outdoor) after a fire broke out in an industrial building. GC-MS/MS analysis revealed that 2,3,6,7-TeCBP concentrations after the fire (3046 fg/m3 at the "epicentre") were remarkably higher than that of the 2,3,7,8-TeCDD. Moreover, the monitoring for over two years has demonstrated the persistent nature of this compound. 2,3,6,7-TeCBP was also analyzed in two different ambient air scenario: industrial and periurban areas and in both cases its concentrations were no matter of concern, confirming the correlation of 2,3,6,7-TeCBP with fire episodes. Collectively, 2,3,6,7-TeCBP, because of its toxicity, concentration and persistence, is a crucial compound in the evaluation of the health effects correlated with fires of electrical systems.

11.
Sci Total Environ ; 716: 135354, 2020 May 10.
Article in English | MEDLINE | ID: mdl-31839322

ABSTRACT

Co-combustion of biomass and plastic waste has emerged as one of the most promising approach at the plastic waste management challenge. This strategy is particularly attractive since it can simultaneously solve the increasing energy demand and reduce the plastic wastes volume. However, since the combustion of both plastic wastes and natural materials is a potential source of organic micropollutants, such as polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), polychlorinated biphenyls (PCBs) and of polycyclic aromatic hydrocarbons (PAHs), beside particulate matter, the environmental sustainability of the waste to energy (WtE) co-combustion strategy has to be assessed. To this end, the emissions of dioxin like (dl)-PCBs, PCDD/Fs and PAHs from a 4-MW thermal power plant fueled with rice husk, partially replaced by end-of-life polyethylene (PE) industrial waste (up to 15% of the thermal power of the plant), were investigated. GC-MS/MS analyses have demonstrated that the co-combustion of PE waste and rice husk presents a profile of environmental sustainability. The concentrations of dl-PCBs, PCDD/Fs and PAHs were extremely low and they have remained almost unaffected by introducing PE in feed. In particular, emissions of PCCD/Fs and dl-PCBs in flue gas were in the range 0.6-1.0 and 0.2-0.6 pg TEQ/Nm3, respectively, while PAHs concentrations ranged from 410 to 825 ng/Nm3. Furthermore, the emission factors of these organic pollutants were found to be lower with PE increasing rate while particulate matter emissions were not affected by co-combustions. Collectively, the investigation has demonstrated that the noils of the industrial PE, due to the low content in halides and metals, can be used as auxiliary fuel and energetically recycled through co-combustion with rice husk. This case of study represents an effective application of the WtE strategy and a concrete approach to mitigate the threat of plastic pollution.


Subject(s)
Oryza , Polychlorinated Dibenzodioxins , Air Pollutants , Benzofurans , Dibenzofurans , Dibenzofurans, Polychlorinated , Environmental Monitoring , Polychlorinated Biphenyls , Polyethylene , Tandem Mass Spectrometry
12.
Chemosphere ; 239: 124666, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31479911

ABSTRACT

The toxicity of polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) is well known, and for this reason studying and monitoring these chemicals is fundamental. Activated carbon fibers (ACFs) are made of an adsorbent material widely used in the industrial field for the removal of micropollutants. The first step in this work was to perform a physico-chemical characterization of the adsorbent, focused on the analytical use of it. In particular, its specific surface area was defined around 2500 m2/g consisting in a homogeneous microporosity distribution and the characterization of ACF surface functional groups pointed out a balance between basic and acidic group. The validity of using the ACF as solid phase extraction and as passive sampler for PCDD/Fs and PCBs in water, has been evaluated by the percentage recovery (R %) of 13C12-labeled standards of PCDD/Fs and PCBs added in a known volume of water. The results were compared to the R% of Liquid-Liquid Extraction which showed a better reproducibility of the results and the proposed method satisfy completely the requirements of US EPA reference methods.


Subject(s)
Charcoal/chemistry , Dibenzofurans, Polychlorinated/analysis , Environmental Monitoring/methods , Environmental Restoration and Remediation/methods , Polychlorinated Biphenyls/analysis , Polychlorinated Dibenzodioxins/analysis , Benzofurans/analysis , Carbon Fiber , Reproducibility of Results , Solid Phase Extraction , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...