Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 699, 2021 Jan 12.
Article in English | MEDLINE | ID: mdl-33436708

ABSTRACT

Developing compact ion accelerators using intense lasers is a very active area of research, motivated by a strong applicative potential in science, industry and healthcare. However, proposed applications in medical therapy, as well as in nuclear and particle physics demand a strict control of ion energy, as well as of the angular and spectral distribution of ion beam, beyond the intrinsic limitations of the several acceleration mechanisms explored so far. Here we report on the production of highly collimated ([Formula: see text] half angle divergence), high-charge (10s of pC) and quasi-monoenergetic proton beams up to [Formula: see text] 50 MeV, using a recently developed method based on helical coil targetry. In this concept, ions accelerated from a laser-irradiated foil are post-accelerated and conditioned in a helical structure positioned at the rear of the foil. The pencil beam of protons was produced by guided post-acceleration at a rate of [Formula: see text] 2 GeV/m, without sacrificing the excellent beam emittance of the laser-driven proton beams. 3D particle tracing simulations indicate the possibility of sustaining high acceleration gradients over extended helical coil lengths, thus maximising the gain from such miniature accelerating modules.

2.
Sci Rep ; 9(1): 18672, 2019 Dec 10.
Article in English | MEDLINE | ID: mdl-31822698

ABSTRACT

We report on a detailed experimental and numerical study on the boosted acceleration of protons from ultra-thin hemispherical targets utilizing multi-Joule short-pulse laser-systems. For a laser intensity of 1 × 1020 W/cm2 and an on-target energy of only 1.3 J with this setup a proton cut-off energy of 8.5 MeV was achieved, which is a factor of 1.8 higher compared to a flat foil target of the same thickness. While a boost of the acceleration process by additionally injected electrons was observed for sophisticated targets at high-energy laser-systems before, our studies reveal that the process can be utilized over at least two orders of magnitude in intensity and is therefore suitable for a large number of nowadays existing laser-systems. We retrieved a cut-off energy of about 6.5 MeV of proton energy per Joule of incident laser energy, which is a noticeable enhancement with respect to previous results employing this mechanism. The approach presented here has the advantage of using structure-wise simple targets and being sustainable for numerous applications and high repetition rate demands at the same time.

3.
Nat Commun ; 7: 10792, 2016 Apr 18.
Article in English | MEDLINE | ID: mdl-27089200

ABSTRACT

All-optical approaches to particle acceleration are currently attracting a significant research effort internationally. Although characterized by exceptional transverse and longitudinal emittance, laser-driven ion beams currently have limitations in terms of peak ion energy, bandwidth of the energy spectrum and beam divergence. Here we introduce the concept of a versatile, miniature linear accelerating module, which, by employing laser-excited electromagnetic pulses directed along a helical path surrounding the laser-accelerated ion beams, addresses these shortcomings simultaneously. In a proof-of-principle experiment on a university-scale system, we demonstrate post-acceleration of laser-driven protons from a flat foil at a rate of 0.5 GeV m(-1), already beyond what can be sustained by conventional accelerator technologies, with dynamic beam collimation and energy selection. These results open up new opportunities for the development of extremely compact and cost-effective ion accelerators for both established and innovative applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...