Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E Stat Nonlin Soft Matter Phys ; 81(1 Pt 1): 011501, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20365375

ABSTRACT

A theoretical formalism to predict the structure factors observed in dipolar soft-sphere fluids based on a virial expansion of the radial distribution function is presented. The theory is able to account for cases with and without externally applied magnetic fields. A thorough comparison of the theoretical results to molecular-dynamics simulations shows a good agreement between theory and numerical simulations when the fraction of particles involved in clustering is low; i.e., the dipolar coupling parameter is lambda less, similar 2, and the volume fraction is phi less, similar 0.25. When magnetic fields are applied to the system, special attention is paid to the study of the anisotropy of the structure factor. The theory reasonably accounts for the structure factors when the Langevin parameter is smaller than 5.

2.
J Chem Phys ; 131(13): 134901, 2009 Oct 07.
Article in English | MEDLINE | ID: mdl-19814569

ABSTRACT

We present an extensive numerical study on the behavior of spherical brushes confined into a spherical cavity. Self-consistent field (SCF) and off-lattice Monte Carlo (MC) techniques are used in order to determine the monomer and end-chain density profiles and the cavity pressure as a function of the brush properties. A comparison of the results obtained via SCF, MC, and the Flory theory for polymer solutions reveals SCF calculations to be a valuable alternative to MC simulations in the case of free and softly compressed brushes, while the Flory's theory accounts remarkably well for the pressure in the strongly compressed regime. In the range of high compressions, we have found the cavity pressure P to follow a scale relationship with the monomer volume fraction v, P approximately v(alpha). SCF calculations give alpha=2.15+/-0.05, whereas MC simulations lead to alpha=2.73+/-0.04. The underestimation of alpha by the SCF method is explained in terms of the inappropriate account of the monomer density correlations when a mean field approach is used.


Subject(s)
Monte Carlo Method , Molecular Conformation , Polymers/chemistry , Pressure
3.
J Chem Phys ; 129(23): 234104, 2008 Dec 21.
Article in English | MEDLINE | ID: mdl-19102523

ABSTRACT

An extension to the P(3)M algorithm for electrostatic interactions is presented that allows to efficiently compute dipolar interactions in periodic boundary conditions. Theoretical estimates for the root-mean-square error of the forces, torques, and the energy are derived. The applicability of the estimates is tested and confirmed in several numerical examples. A comparison of the computational performance of the new algorithm to a standard dipolar-Ewald summation methods shows a performance crossover from the Ewald method to the dipolar P(3)M method for as few as 300 dipolar particles. In larger systems, the new algorithm represents a substantial improvement in performance with respect to the dipolar standard Ewald method. Finally, a test comparing point-dipole-based and charged-pair based models shows that point-dipole-based models exhibit a better performance than charged-pair based models.

4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 78(3 Pt 1): 031403, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18851034

ABSTRACT

Extensive two-dimensional Langevin dynamics simulations are used to determine the effect of steady shear flows on the crystal nucleation kinetics of charge stabilized colloids and colloids whose pair potential possess an attractive shallow well of a few k_{B}T 's (attractive colloids). Results show that in both types of systems small amounts of shear speeds up the crystallization process and enhances the quality of the growing crystal significantly. Moderate shear rates, on the other hand, destroy the ordering in the system. The very high shear rate regime where a reentering transition to the ordered state could exist is not considered in this work. In addition to the crystal nucleation phenomena, the analysis of the transport properties and the characterization of the steady state regime under shear are performed.

5.
Phys Chem Chem Phys ; 10(14): 1883-95, 2008 Apr 14.
Article in English | MEDLINE | ID: mdl-18368181

ABSTRACT

We try to elucidate the microstructure formation in a monodisperse ferrofluid monolayer. The system under study consists of soft sphere magnetic dipolar particles confined to a thin fluid layer. The positions of the particles are constrained to a 2D geometry, whereas the particle magnetic dipole moments are not fixed to the body systems, and are free to rotate in 3 dimensions, hence forming in what we call a quasi-2D geometry. Using a combination of analytical density functional theory and molecular dynamics (MD) simulations, we find that for the studied range of parameters the majority of aggregates might be divided into two types: chains and rings. Their sizes and area fractions are strongly influenced by the geometrical constraints. We show that for quasi-2D systems the excluded area effects play one of the most important parts in the microstructure formation. The simulation technique and the theoretical model put forward in the present paper agree qualitatively with the results of recent in situ observations of the microstructures observed in ferrofluid monolayers [M. Klokkenberg, R. P. A. Dullens, W. K. Regel, B. H. Erné, A. P. Philipse, Phys. Rev. Lett., 2006, 96, 037203].


Subject(s)
Colloids/analysis , Computer Simulation , Ferric Compounds/analysis , Magnetics , Models, Theoretical , Nanostructures/analysis , Algorithms , Colloids/chemistry , Ferric Compounds/chemistry , Molecular Conformation , Nanostructures/chemistry , Particle Size , Surface Properties
6.
J Phys Condens Matter ; 20(20): 204125, 2008 May 21.
Article in English | MEDLINE | ID: mdl-21694254

ABSTRACT

In order to investigate the peculiarities of the aggregation processes in ferrofluids in a quasi-2D geometry, a combination of density functional theory (DFT) and molecular dynamics (MD) simulations is presented. The microstructure formation in monodisperse ferrofluid monolayers is studied thoroughly through a comparison of the theoretical and computational results. Theoretical and simulation results show similar trends which renders the theoretical approach a useful tool for getting insight into the microstructure formation in monolayers.

7.
Biophys Chem ; 115(2-3): 277-83, 2005 Apr 01.
Article in English | MEDLINE | ID: mdl-15752618

ABSTRACT

We present the results of extensive off-lattice Monte-Carlo simulations of a stiff polymer chain adsorbing onto a sticky periodic stripe-like pattern of variable width. We have analyzed, in terms of the chain length and rigidity, the adsorption and the pattern recognition process as a function of the stripe width. We have seen that this process is twofold: (i) the chain adsorbs rather isotropically onto the surface at a characteristic temperature T(c) and (ii) a further reduction in the temperature is needed for the chain to reorganize and adjust to the specific pattern. Such polymer reorganization has been studied through the evaluation of the chain degree of stretching and asphericity. We have found an optimal stripe width that maximizes the stretching. We have introduced a criteria to estimate the characteristic temperature at which the pattern recognition takes place T(r)

Subject(s)
Polymers/chemistry , Adsorption , Monte Carlo Method , Temperature
8.
Phys Rev E Stat Nonlin Soft Matter Phys ; 70(5 Pt 1): 051405, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15600616

ABSTRACT

The dynamical scaling hypothesis for the structure factor, S (q) , in depletion-driven colloidal phase separation is studied by carrying out Brownian dynamics simulations. A true dynamical scaling is observed for shallow quenches into the two-phase coexistence region. In such a quench, compact clusters nucleate and grow with time and there is only one characteristic length scale in the system after an initial transient period. Scaling is satisfied beyond this initial period. In contrast, deep quenches lead to fractal cluster growth, and the system is controlled by two characteristic lengths that evolve differently in time [Huang, Oh, and Sorensen (HOS), Phys. Rev. E 57, 875 (1998)]. True dynamical scaling thus cannot be expected to hold. However, an apparent scaling for the structure factor is observed over some period of time when these two characteristic length scales become comparable to each other. We compare our simulation results for the total structure factor to theoretical predictions by HOS by writing it as a product of cluster-cluster and the averaged single-cluster structure factors, each with its own characteristic length.

9.
Phys Rev E Stat Nonlin Soft Matter Phys ; 70(1 Pt 1): 011405, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15324049

ABSTRACT

We present results from a detailed numerical study of the kinetics of phase transformations in a model two-dimensional depletion-driven colloidal system. Transition from a single, dispersed phase to a two-phase coexistence of monomers and clusters is obtained as the depth of the interaction potential among the colloidal particles is changed. Increasing the well depth further, fractal clusters are observed in the simulation. These fractal clusters have a hybrid structure in the sense that they show hexagonal closed-packed crystalline ordering at short length scales and a ramified fractal nature at larger length scales. For sufficiently deep potential wells, the diffusion-limited cluster-cluster aggregation model is recovered in terms of the large-scale fractal dimension Df of the clusters, the kinetic exponent z, and the scaling form of the cluster size distribution. For shallower well depths inside the two-phase coexistence region, simulation results for the kinetics of cluster growth are compared with intermediate-stage phase separation in binary mixtures. In the single-phase region, growth kinetics agree well with a mean-field aggregation-fragmentation model of Sorensen, Zhang, and Taylor.

SELECTION OF CITATIONS
SEARCH DETAIL
...