Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 8: 14127, 2017 02 13.
Article in English | MEDLINE | ID: mdl-28193997

ABSTRACT

The development of a successful lineage reprogramming strategy of liver to pancreas holds promises for the treatment and potential cure of diabetes. The liver is an ideal tissue source for generating pancreatic cells, because of its close developmental origin with the pancreas and its regenerative ability. Yet, the molecular bases of hepatic and pancreatic cellular plasticity are still poorly understood. Here, we report that the TALE homeoprotein TGIF2 acts as a developmental regulator of the pancreas versus liver fate decision and is sufficient to elicit liver-to-pancreas fate conversion both ex vivo and in vivo. Hepatocytes expressing Tgif2 undergo extensive transcriptional remodelling, which represses the original hepatic identity and, over time, induces a pancreatic progenitor-like phenotype. Consistently, in vivo forced expression of Tgif2 activates pancreatic progenitor genes in adult mouse hepatocytes. This study uncovers the reprogramming activity of TGIF2 and suggests a stepwise reprogramming paradigm, whereby a 'lineage-restricted' dedifferentiation step precedes the identity switch.


Subject(s)
Cellular Reprogramming/genetics , Homeodomain Proteins/genetics , Liver/metabolism , Pancreas/metabolism , Repressor Proteins/genetics , Stem Cells/metabolism , Animals , Cell Differentiation/genetics , Cell Lineage/genetics , Cells, Cultured , Gene Expression Profiling , Gene Expression Regulation, Developmental , Hepatocytes/cytology , Hepatocytes/metabolism , Homeodomain Proteins/metabolism , Liver/cytology , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Pancreas/cytology , Repressor Proteins/metabolism
2.
Dev Dyn ; 243(1): 76-87, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24123411

ABSTRACT

During embryonic development, cells become gradually restricted in their developmental potential and start elaborating lineage-specific transcriptional networks to ultimately acquire a unique differentiated state. Hox genes play a central role in specifying regional identities, thereby providing the cell with critical information on positional value along its differentiation path. The exquisite DNA-binding specificity of the Hox proteins is frequently dependent upon their interaction with members of the TALE family of homeodomain proteins. In addition to their function as Hox-cofactors, TALE homeoproteins control multiple crucial developmental processes through Hox-independent mechanisms. Here, we will review recent findings on the function of both Hox and TALE proteins in cell differentiation, referring mostly to vertebrate species. In addition, we will discuss the direct implications of this knowledge on cell plasticity and cell reprogramming.


Subject(s)
Cell Differentiation/physiology , Cellular Reprogramming/physiology , Homeodomain Proteins/metabolism , Repressor Proteins/metabolism , Animals , Cell Differentiation/genetics , Cellular Reprogramming/genetics , Homeodomain Proteins/genetics , Humans , Repressor Proteins/genetics
3.
Genes Dev ; 27(17): 1932-46, 2013 Sep 01.
Article in English | MEDLINE | ID: mdl-24013505

ABSTRACT

Understanding how distinct cell types arise from multipotent progenitor cells is a major quest in stem cell biology. The liver and pancreas share many aspects of their early development and possibly originate from a common progenitor. However, how liver and pancreas cells diverge from a common endoderm progenitor population and adopt specific fates remains elusive. Using RNA sequencing (RNA-seq), we defined the molecular identity of liver and pancreas progenitors that were isolated from the mouse embryo at two time points, spanning the period when the lineage decision is made. The integration of temporal and spatial gene expression profiles unveiled mutually exclusive signaling signatures in hepatic and pancreatic progenitors. Importantly, we identified the noncanonical Wnt pathway as a potential developmental regulator of this fate decision and capable of inducing the pancreas program in endoderm and liver cells. Our study offers an unprecedented view of gene expression programs in liver and pancreas progenitors and forms the basis for formulating lineage-reprogramming strategies to convert adult hepatic cells into pancreatic cells.


Subject(s)
Cell Differentiation , Gene Expression Regulation, Developmental , Liver , Pancreas , Signal Transduction , Stem Cells/cytology , Animals , Cell Line , Cell Lineage , Endoderm/cytology , Gene Expression Profiling , Liver/cytology , Liver/embryology , Mice , Pancreas/cytology , Pancreas/embryology , Sequence Analysis, RNA , Time Factors , Wnt Proteins/genetics , Wnt Proteins/metabolism , Xenopus/embryology
SELECTION OF CITATIONS
SEARCH DETAIL
...