Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Funct Biomater ; 15(6)2024 May 27.
Article in English | MEDLINE | ID: mdl-38921520

ABSTRACT

The use of endosseous dental implants may become unfeasible in the presence of significant maxillary bone atrophy; thus, surgical techniques have been proposed to promote bone regeneration in such cases. However, such techniques are complex and may expose the patient to complications. Subperiosteal implants, being placed between the periosteum and the residual alveolar bone, are largely independent of bone thickness. Such devices had been abandoned due to the complexity of positioning and adaptation to the recipient bone site, but are nowadays witnessing an era of revival following the introduction of new acquisition procedures, new materials, and innovative manufacturing methods. We have analyzed the changes induced in gene and protein expression in C-12720 human osteoblasts by differently surface-modified TiO2 materials to verify their ability to promote bone formation. The TiO2 materials tested were (i) raw machined, (ii) electropolished with acid mixture, (iii) sand-blasted + acid-etched, (iv) AlTiColorTM surface, and (v) anodized. All five surfaces efficiently stimulated the expression of markers of osteoblastic differentiation, adhesion, and osteogenesis, such as RUNX2, osteocalcin, osterix, N-cadherin, ß-catenin, and osteoprotegerin, while cell viability/proliferation was unaffected. Collectively, our observations document that presently available TiO2 materials are well suited for the manufacturing of modern subperiosteal implants.

2.
J Funct Biomater ; 14(2)2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36826858

ABSTRACT

INTRODUCTION: Titanium alloys currently are the most used material for the manufacture of dental endosseous implants. However, in partially or totally edentulous patients, varying degrees of maxillary bone resorption usually occur, making the application of these devices difficult or even impossible. In these cases, a suitable alternative is offered by subperiosteal implants, whose use is undergoing a revival of interest following the introduction of novel, computer-assisted manufacturing techniques. Several procedures have been developed for the modification of titanium surfaces so to improve their biocompatibility and integration with bone. Information is, however, still incomplete as far as the most convenient surface modifications to apply with subperiosteal implants, in which an integration with soft mucosal tissues is just as important. OBJECTIVES: The present study aimed at evaluating whether different treatments of titanium surfaces can produce different effects on the viability, attachment, and differentiation of gingival fibroblasts, i.e., the cell type mainly involved in osteointegration as well as the healing of soft tissues injured by surgical procedures, in order to verify whether any of the treatments are preferable under these respects. METHODOLOGY: The human immortalized gingival fibroblast (CRL-4061 line) were cultured in the presence of titanium specimens previously treated with five different procedures for surface modification: (i) raw machined (Ti-1); (ii) electropolished (Ti-2); (iii) sand-blasted acid-etched (Ti-3); (iv) Al Ti Color™ proprietary procedure (Ti-4); and (v) anodized (Ti-5). At different times of incubation, viability and proliferation of cells, was determined along with the changes in the expression patterns of ECM-related genes involved in fibroblast attachment and differentiation: vinculin, fibronectin, collagen type I-alpha 1 chain, focal adhesion kinase, integrin ß-1, and N-cadherin. Three different experiments were carried out for each experimental point. The release from fibroblasts of endothelin-1 was also analyzed as a marker of inflammatory response. The proliferation and migration of fibroblasts were evaluated by scratch tests. RESULTS: None of the five types of titanium surface tested significantly affected the fibroblasts' viability and proliferation. The release of endothelin-1 was also not significantly affected by any of the specimens. On the other hand, all titanium specimens significantly stimulated the expression of ECM-related genes at varying degrees. The proliferation and migration abilities of fibroblasts were also significantly stimulated by all types of titanium surface, with a higher-to-lower efficiency in the order: Ti-3 > Ti-4 > Ti-5 > Ti-2 > Ti-1, thus identifying sandblasting acid-etching as the most convenient treatment. CONCLUSIONS: Our observations suggest that the titanium alloys used for manufacturing subperiosteal dental implants do not produce cytotoxic or proinflammatory effects on gingival fibroblasts, and that sandblasting acid-etching may be the surface treatment of choice as to stimulate the differentiation of gingival fibroblasts in the direction of attachment and migration, i.e., the features allegedly associated with a more efficient implant osteointegration, wound healing, and connective tissue seal formation.

3.
Minerva Dent Oral Sci ; 71(6): 353-360, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36345834

ABSTRACT

Subperiosteal implants were introduced in the last century. Poor clinical results led those implants to be progressively abandoned. Recently, several Authors suggested a revival of subperiosteal implants as an alternative to regenerative procedures. The purpose of this study was to describe the clinical application of custom-made additively manufactured subperiosteal implant for fixed prosthetic rehabilitation of edentulous maxilla. Plaster models of the upper and the lower arch were scanned, as well as the mock-up. Digital Imaging and Communications in Medicine data obtained from cone beam computed tomography were processed through the thresholding procedure. The design of the subperiosteal implant was drawn on the stereolithographic model and scanned. Once the digital project of the subperiosteal implant was completed, it was sent to additive manufacturing. After the surgery, the patient was strictly monitored for up to 2 years. The outcomes were assessed based on the incurrence of biological and mechanical complications, postoperative complications, and implant survival. The patient did not suffer from postoperative complications. Neither biological nor mechanical complications occurred during the follow-up period. At the end of the study, the implant was still in function. Custom-made subperiosteal implants could be considered as an alternative to regenerative procedures for the rehabilitation of severe bone atrophy. Further studies are needed in the future to confirm the positive outcome.


Subject(s)
Dental Implants , Mouth, Edentulous , Humans , Dental Implantation, Endosseous/methods , Mouth, Edentulous/surgery , Maxilla/diagnostic imaging , Maxilla/surgery , Atrophy
4.
Biomed Res Int ; 2018: 5420391, 2018.
Article in English | MEDLINE | ID: mdl-29998133

ABSTRACT

PURPOSE: To present a digital technique for the fabrication of custom-made subperiosteal implants and to report on the survival and complication rates encountered when using these fixtures. METHODS: The data used for this retrospective clinical study were derived from the medical records of five different private dental practices. Inclusion criteria were patients over the age of 60, treated with custom-made direct metal laser sintering (DMLS) titanium subperiosteal implants (Eagle-Grid®, BTK, Dueville, Vicenza) during a two-year period (2014-2015) and restored with fixed restorations; all enrolled patients needed to have complete pre- and postoperative clinical and radiographic documentation, with at least 2 years of follow-up. Exclusion criteria were smoking and bruxism. The main outcomes looked at were implant survival and complications. RESULTS: Seventy patients (39 males and 31 females, aged 62-79 years) who had been treated with custom-made DMLS titanium subperiosteal implants were enrolled in this study. After 2 years of follow-up, three implants were lost due to recurrent, untreatable infections; the survival rate was therefore 95.8% (67/70 implants). Four patients reported pain/discomfort/swelling after implant placement; the incidence of immediate postoperative complications was therefore 5.7% (4/70 implants). During the follow-up period, one patient suffered from recurrent infections classified as a biologic complication; the incidence of biologic complications was therefore 1.4% (1/67 surviving implants). Finally, four patients experienced prosthetic problems with their implant-supported restorations during the provisional phase (fracture of the acrylic restoration) and two patients had ceramic chipping of the definitive restoration; the incidence of prosthetic complications was therefore 8.9% (6/67 surviving implants). CONCLUSIONS: Within the limits of the present study (limited follow-up time and low number of patients treated, retrospective design), the application of custom-made DMLS titanium subperiosteal implants showed satisfactory implant survival (95.8%) and low complication rates. Further studies are needed to confirm the positive outcomes found in this research.


Subject(s)
Dental Implants , Dental Prosthesis Design , Titanium , Aged , Dental Restoration Failure , Female , Follow-Up Studies , Humans , Male , Middle Aged , Retrospective Studies , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...