Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 402(6760): 429-33, 1999 Nov 25.
Article in English | MEDLINE | ID: mdl-10586885

ABSTRACT

Membrane fission is essential in intracellular transport. Acyl-coenzyme As (acyl-CoAs) are important in lipid remodelling and are required for fission of COPI-coated vesicles. Here we show that CtBP/BARS, a protein that functions in the dynamics of Golgi tubules, is an essential component of the fission machinery operating at Golgi tubular networks, including Golgi compartments involved in protein transport and sorting. CtBP/BARS-induced fission was preceded by the formation of constricted sites in Golgi tubules, whose extreme curvature is likely to involve local changes in the membrane lipid composition. We find that CtBP/BARS uses acyl-CoA to selectively catalyse the acylation of lysophosphatidic acid to phosphatidic acid both in pure lipidic systems and in Golgi membranes, and that this reaction is essential for fission. Our results indicate a key role for lipid metabolic pathways in membrane fission.


Subject(s)
Carrier Proteins/metabolism , Golgi Apparatus/metabolism , Intracellular Membranes/metabolism , Lysophospholipids/metabolism , Transcription Factors , Acyl Coenzyme A/metabolism , Acylation , Animals , Brain/metabolism , Brain/ultrastructure , Golgi Apparatus/ultrastructure , In Vitro Techniques , Intracellular Membranes/ultrastructure , Membrane Lipids/metabolism , Rats , Recombinant Proteins/metabolism
2.
J Biol Chem ; 272(22): 14200-7, 1997 May 30.
Article in English | MEDLINE | ID: mdl-9162051

ABSTRACT

Brefeldin A, a toxin inhibitor of vesicular traffic, induces the selective mono-ADP-ribosylation of two cytosolic proteins, glyceraldehyde-3-phosphate dehydrogenase and the novel GTP-binding protein BARS-50. Here, we have used a new quantitative assay for the characterization of this reaction and the development of specific pharmacological inhibitors. Mono-ADP-ribosylation is activated by brefeldin A with an EC50 of 17.0 +/- 3.1 microg/ml, but not by biologically inactive analogs including a brefeldin A stereoisomer. Brefeldin A acts by increasing the Vmax of the reaction, whereas it does not influence the Km of the enzyme for NAD+ (154 +/- 13 microM). The enzyme is an integral membrane protein present in most tissues and is modulated by Zn2+, Cu2+, ATP (but not by other nucleotides), pH, temperature, and ionic strength. To identify inhibitors of the reaction, a large number of drugs previously tested as blockers of bacterial ADP-ribosyltransferases were screened. Two classes of molecules, one belonging to the coumarin group (dicumarol, coumermycin A1, and novobiocin) and the other to the quinone group (ilimaquinone, benzoquinone, and naphthoquinone), rather potently and specifically inhibited brefeldin A-dependent mono-ADP-ribosylation. When tested in living cells, these molecules antagonized the tubular reticular redistribution of the Golgi complex caused by brefeldin A at concentrations similar to those active in the mono-ADP-ribosylation assay in vitro, suggesting a role for mono-ADP-ribosylation in the cellular actions of brefeldin A.


Subject(s)
Cyclopentanes/pharmacology , GTP-Binding Proteins/metabolism , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Protein Processing, Post-Translational/drug effects , Protein Synthesis Inhibitors/pharmacology , Adenosine Diphosphate , Animals , Brefeldin A , Cell Line , Male , Rats , Rats, Sprague-Dawley , Ribose , Structure-Activity Relationship , Tissue Distribution
3.
Adv Exp Med Biol ; 419: 331-5, 1997.
Article in English | MEDLINE | ID: mdl-9193673

ABSTRACT

Brefeldin A (BFA) is a fungal metabolite that exerts generally inhibitory actions on membrane transport and induces the disappearance of the Golgi complex. Previously we have shown that BFA stimulates the ADP-ribosylation of two cytosolic proteins of 38 and 50 KD. The BFA-binding components mediating the BFA-sensitive ADP-ribosylation (BAR) and the effect of BFA on ARF binding to Golgi membranes have similar specificities and affinities for BFA and its analogues, suggesting that BAR may have a role in the cellular effects of BFA. To investigate this we used the approach to impair BAR activity by the use of BAR inhibitors. A series of BAR inhibitors was developed and their effects were studied in RBL cells treated with BFA. In addition to the common ADP-ribosylation inhibitors (nicotinamide and aminobenzamide), compounds belonging to the cumarin (novobiocin, cumermycin, dicumarol) class were active BAR inhibitors. All BAR inhibitors were able to prevent the BFA-induced redistribution of a Golgi marker (Helix pomatia lectin) into the endoplasmic reticulum, as assessed in immunofluorescence experiments. At the ultrastructural level, BAR inhibitors prevented the tubular-vesicular transformation of the Golgi complex caused by BFA. The potencies of these compounds in preventing the BFA effects on the Golgi complex were similar to those at which they inhibited BAR. Altogether these data support the hypothesis that BAR mediates at least some of the effects of BFA on the Golgi structure and function.


Subject(s)
Adenosine Diphosphate Ribose/metabolism , Cyclopentanes/pharmacology , Golgi Apparatus/drug effects , Brefeldin A , Golgi Apparatus/physiology , Golgi Apparatus/ultrastructure
4.
Adv Exp Med Biol ; 419: 337-42, 1997.
Article in English | MEDLINE | ID: mdl-9193674

ABSTRACT

We have recently described a novel enzymatic mono-ADP-ribosyl transfer reaction induced by brefeldin A, a well characterized inhibitor of vesicular traffic, which selectively modifies two cytosolic proteins of 38 kDa (p38) and 50 kDa (BARS-50). p38 was identified as glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a glycolytic enzyme and a multifunctional protein involved in several cellular processes; BARS-50 might be a novel G protein, since it is able to bind GTP and the beta gamma subunit of G proteins. We have characterized this enzymatic activity and screened in vitro the effects of different drugs belonging to the coumarine (dicumarol, coumermicin A1 and novobiocin) and quinone (ilimaquinones, benzoquinones and naphtoquinones) class. These drugs blocked the BFA-dependent mono-ADP-ribosylation, showed remarkable effects on Golgi morphology in control cells, and antagonized the tubular reticular redistribution of the Golgi complex in brefeldin A treated cells (see papers of Corda and Colanzi in this issue) suggesting a possible role for ADP-ribosylation in both the cellular effects of brefeldin A and the maintenance of the structure/function of the Golgi complex.


Subject(s)
Adenosine Diphosphate Ribose/metabolism , Cyclopentanes/pharmacology , GTP-Binding Proteins/metabolism , Brefeldin A , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...