Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Bioinform Adv ; 3(1): vbad018, 2023.
Article in English | MEDLINE | ID: mdl-36908397

ABSTRACT

Motivation: Biobank scale genetic associations results over thousands of traits can be difficult to visualize and navigate. Results: We have created LAVAA, a visualization web-application to generate genetic volcano plots for simultaneously considering the P-value, effect size, case counts, trait class and fine-mapping posterior probability at a single-nucleotide polymorphism (SNP) across a range of traits from a large set of genome-wide association study. We find that user interaction with association results in LAVAA can enrich and enhance the biological interpretation of individual loci. Availability and implementation: LAVAA is available as a stand-alone web service (https://geneviz.aalto.fi/LAVAA/) and will be available in future releases of the finngen.fi website starting with release 10 in late 2023.

2.
PLoS Genet ; 17(3): e1009347, 2021 03.
Article in English | MEDLINE | ID: mdl-33661898

ABSTRACT

Information about individual-level genetic ancestry is central to population genetics, forensics and genomic medicine. So far, studies have typically considered genetic ancestry on a broad continental level, and there is much less understanding of how more detailed genetic ancestry profiles can be generated and how accurate and reliable they are. Here, we assess these questions by developing a framework for individual-level ancestry estimation within a single European country, Finland, and we apply the framework to track changes in the fine-scale genetic structure throughout the 20th century. We estimate the genetic ancestry for 18,463 individuals from the National FINRISK Study with respect to up to 10 genetically and geographically motivated Finnish reference groups and illustrate the annual changes in the fine-scale genetic structure over the decades from 1920s to 1980s for 12 geographic regions of Finland. We detected major changes after a sudden, internal migration related to World War II from the region of ceded Karelia to the other parts of the country as well as the effect of urbanization starting from the 1950s. We also show that while the level of genetic heterogeneity in general increases towards the present day, its rate of change has considerable differences between the regions. To our knowledge, this is the first study that estimates annual changes in the fine-scale ancestry profiles within a relatively homogeneous European country and demonstrates how such information captures a detailed spatial and temporal history of a population. We provide an interactive website for the general public to examine our results.


Subject(s)
Genetic Structures , Genetics, Population , Databases, Genetic , Finland , Genetic Heterogeneity , Geography , Human Migration , Humans , Models, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL