Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 472: 134500, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38714054

ABSTRACT

Thermal landfill leachate evaporator systems can reduce the volume of leachate by up to 97%, while releasing water vapor and producing residuals (volume-reduced leachate and sludge) that are managed on-site. On-site thermal evaporators offer landfill operators leachate management autonomy without being subject to increasingly stringent wastewater treatment plant requirements. However, little is known about the partitioning of PFAS within these systems, nor the extent to which PFAS may be emitted into the environment via vapor. In this study, feed leachate, residual evaporated leachate, sludge, and condensed vapor were sampled at two active full-scale thermal landfill leachate evaporators and from a laboratory-scale leachate evaporation experiment. Samples were analyzed for 91 PFAS via ultra-high pressure liquid chromatography - tandem mass spectrometry (UHPLC-MS/MS). Similar trends were observed from Evaporator 1, Evaporator 2, and the laboratory-scale evaporator; ∑PFAS were concentrated in the residual evaporated leachate during evaporation by a factor of 5.3 to 20. All condensed vapors sampled (n = 5) contained PFAS, predominantly 5:3 fluorotelomer carboxylic acid (5:3FTCA), (full-scale vapors 729 - 4087 ng/L PFAS; lab-scale vapor 61.0 ng/L PFAS). For Evaporators 1 and 2, an estimated 9 - 24% and 10%, respectively, of the PFAS mass entering the evaporators in leachate was released with vapor during the days of sample collection. '.

2.
Waste Manag ; 180: 125-134, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38564913

ABSTRACT

Composting municipal food waste is a key strategy for beneficially reusing methane-producing waste that would otherwise occupy landfill space. However, land-applied compost can cycle per- and polyfluoroalkyl substances (PFAS) back into the food supply and the environment. We partnered with a pilot-scale windrow composting facility to investigate the sources and fate of 40 PFAS in food waste compost. A comparison of feedstock materials yielded concentrations of ∑PFAS under 1 ng g-1 in mulch and food waste and at 1380 ng g-1 in leachate from used compostable food contact materials. Concentrations of targeted ∑PFAS increased with compost maturity along the windrow (1.85-23.1 ng g-1) and in mature stockpiles of increasing curing age (12.6-84.3 ng g-1). Among 15 PFAS quantified in compost, short-chain perfluorocarboxylic acids (PFCAs) - C5 and C6 PFCAs in particular - led the increasing trend, suggesting biotransformation of precursor PFAS into these terminal PFAS through aerobic decomposition. Several precursor PFAS were also measured, including fluorotelomer carboxylic acids (FTCAs) and polyfluorinated phosphate diesters (PAPs). However, since most targeted analytical methods and proposed regulations prioritize terminal PFAS, testing fully matured compost would provide the most relevant snapshot of PFAS that could be land applied. In addition, removing co-disposed food contact materials from the FW feedstock onsite yielded only a 37 % reduction of PFAS loads in subsequent compost, likely due to PFAS leaching during co-disposal. Source-separation of food contact materials is currently the best management practice for meaningful reduction of PFAS in food waste composts intended for land application.


Subject(s)
Composting , Fluorocarbons , Refuse Disposal , Water Pollutants, Chemical , Food Loss and Waste , Food , Water Pollutants, Chemical/analysis , Waste Disposal Facilities , Fluorocarbons/analysis , Fluorocarbons/metabolism
3.
Waste Manag ; 174: 382-389, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38101234

ABSTRACT

With regulations for per-and polyfluoroalkyl substances (PFAS) impending, the abundance of these chemicals of emerging concern in municipal solid waste (MSW) landfill leachate increasingly challenges landfill operators to seek on-site leachate pre-treatment options. This two-staged study explores the potential reuse of biochar derived from construction and demolition debris (CDD) wood as an in-situ PFAS sorbent for application within MSW landfill leachate collection systems. Batch leaching tests were first used to examine the feasibility of capturing PFAS from landfill leachate using two sources of CDD-wood-derived biochar. Then, columns were used to test the in-situ sorption capabilities of the same biochars under simulated landfill conditions. All leachates were characterized for pH, chemical oxygen demand, ammonia-nitrogen, and 92 PFAS. Seventeen PFAS were detected in the batch leaching experiment, and nine PFAS were detected in column leachates. In the batch leaching scenario, Biochar 1 achieved a maximum of 29% PFAS reduction compared to controls. Columns containing Biochar 1 generated leachates with PFAS concentrations 50% to 80% higher than those in control columns for the duration of the experiment. Columns containing Biochar 2 generated leachates with PFAS concentrations 44% less than controls in week 1 and similar concentrations in weeks 2, 3, and 4. In this study, PFAS removal from landfill leachate using biochar derived from CDD wood was not significant. Further research on biochar derived from CDD wood is needed before it can be recommended as an in-situ landfill leachate pre-treatment method.


Subject(s)
Charcoal , Fluorocarbons , Water Pollutants, Chemical , Wood , Water Pollutants, Chemical/chemistry , Solid Waste , Waste Disposal Facilities
SELECTION OF CITATIONS
SEARCH DETAIL
...