Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Rapid Commun Mass Spectrom ; 30(23): 2537-2544, 2016 Dec 15.
Article in English | MEDLINE | ID: mdl-27619634

ABSTRACT

RATIONALE: Bulk stable isotope analysis (BSIA) of dissolved matter (e.g. dissolved organic carbon, total nitrogen bound (TNb ), etc.) is of particular importance since this pool is a prime conduit in the cycling of N and C. Studying the two elemental pools is of importance, as transformation and transport processes of N and C are inextricably linked in all biologically mediated systems. No system able to analyze natural abundance stable carbon and nitrogen isotope composition in aqueous samples (without offline sample preparation) and simultaneously has been reported so far. Extension of the high-temperature combustion (HTC) system, to be capable of measuring TNb stable nitrogen isotope composition, is described in this study. METHODS: To extend the TOC analyzer to be capable of measuring TNb , modifications from the HTC high-performance liquid chromatography/isotope ratio mass spectrometry (HPLC/IRMS) interface were implemented and expanded. A reduction reactor for conversion of NOx into N2 was implemented into the new developed system. The extension addresses mainly the development of the focusing unit for nitrogen and a degassing device for online separation of TNb from molecular nitrogen (N2 ) prior to injection. RESULTS: The proof of principle of the system was demonstrated with different compound solutions. In this initial testing, the δ15 NAIR-N2 values of the tested compounds were determined with precision and trueness of typically ≤0.5‰. Good results (u ≤ 0.5‰) could be achieved down to a TNb concentration of 40 mgN/L and acceptable results (u ≤ 1.0‰) down to 5 mgN/L. In addition, the development resulted in the first system reported to be suitable for simultaneous and direct δ13 C and δ15 N BSIA of aqueous samples. CONCLUSIONS: The development resulted in the first system shown to be suitable for both δ13 C and δ15 N direct BSIA in aqueous samples. This system could open up new possibilities in SIA-based research fields. Copyright © 2016 John Wiley & Sons, Ltd.

2.
Food Chem ; 204: 122-128, 2016 Aug 01.
Article in English | MEDLINE | ID: mdl-26988484

ABSTRACT

Two approaches were investigated to discriminate between bell peppers of different geographic origins. Firstly, δ(18)O fruit water and corresponding source water were analyzed and correlated to the regional GNIP (Global Network of Isotopes in Precipitation) values. The water and GNIP data showed good correlation with the pepper data, with constant isotope fractionation of about -4. Secondly, compound-specific stable hydrogen isotope data was used for classification. Using n-alkane fingerprinting data, both linear discriminant analysis (LDA) and a likelihood-based classification, using the kernel-density smoothed data, were developed to discriminate between peppers from different origins. Both methods were evaluated using the δ(2)H values and n-alkanes relative composition as variables. Misclassification rates were calculated using a Monte-Carlo 5-fold cross-validation procedure. Comparable overall classification performance was achieved, however, the two methods showed sensitivity to different samples. The combined values of δ(2)H IRMS, and complimentary information regarding the relative abundance of four main alkanes in bell pepper fruit water, has proven effective for geographic origin discrimination. Evaluation of the rarity of observing particular ranges for these characteristics could be used to make quantitative assertions regarding geographic origin of bell peppers and, therefore, have a role in verifying compliance with labeling of geographical origin.


Subject(s)
Capsicum/chemistry , Alkanes/analysis , Deuterium/analysis , Discriminant Analysis , Geography , Isotopes/analysis , Oxygen Isotopes/analysis
3.
Sci Total Environ ; 550: 760-767, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-26849340

ABSTRACT

Concerns have been raised over the sustainability of intensive rice cultivation, where the use of chemical fertilizers and pesticides has been associated with numerous environmental problems. The objective of this study was to test the effect of the herbicide azimsulfuron on important soil functions as affected by amendment with a byproduct of the olive oil industry. Soil was collected from a Mediterranean rice field. Part of it was amended with alperujo compost (AC). Amended and unamended soils were incubated for 43days in presence or not of azimsulfuron, under anoxic-flooded (AF) and oxic-unflooded (OU) conditions. We monitored the dissipation of the herbicide azimsulfuron, C mineralization, soil microbial biomass (SMB) and dissolved organic carbon (DOC) content and its nature. Under AF conditions, the application of compost produced an increase in the dissipation of the herbicide (up to 12.4%). It was related with the higher DOC content, 4 times higher than under OU conditions. Though increases in carbon turnover (under AF and OU conditions) and reduction of SMBC after herbicide application (only under AF conditions) were observed, the differences were not statistically significant. The application of this organic amendment is presented as an efficient management strategy to increase C turnover in agricultural soils and reduce some of the negative effects derived from the application of azimsulfuron under flooded conditions.


Subject(s)
Herbicides/analysis , Pyrazoles/analysis , Soil Pollutants/analysis , Sulfonamides/analysis , Agriculture , Models, Chemical , Soil/chemistry
4.
Anal Bioanal Chem ; 407(19): 5729-38, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26018628

ABSTRACT

An efficient extraction and analysis method was developed for the isolation and quantification of n-alkanes from bell peppers of different geographical locations. Five extraction techniques, i.e., accelerated solvent extraction (ASE), ball mill extraction, ultrasonication, rinsing, and shaking, were quantitatively compared using gas chromatography coupled to mass spectrometry (GC-MS). Rinsing of the surface wax layer of freeze-dried bell peppers with chloroform proved to be a relatively quick and easy method to efficiently extract the main n-alkanes C27, C29, C31, and C33. A combined cleanup and fractionation approach on Teflon-coated silica SPE columns resulted in clean chromatograms and gave reproducible results (recoveries 90-95 %). The GC-MS method was reproducible (R(2) = 0.994-0.997, peak area standard deviation = 2-5%) and sensitive (LODs, S/N = 3, 0.05-0.15 ng/µL). The total main n-alkane concentrations were in the range of 5-50 µg/g dry weight. Seed extractions resulted in much lower total amounts of extracted n-alkanes compared to flesh and surface extractions, demonstrating the need for further improvement of pre-concentration and cleanup. The method was applied to 131 pepper samples from four different countries, and by using the relative n-alkane concentration ratios, Dutch peppers could be discriminated from those of the other countries, with the exception of peppers from the same cultivar. Graphical Abstract Procedure for pepper origin determination.


Subject(s)
Alkanes/analysis , Capsicum/chemistry , Gas Chromatography-Mass Spectrometry/methods , Geography , Seeds/chemistry , Capsicum/embryology
5.
Rapid Commun Mass Spectrom ; 28(23): 2559-73, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25366403

ABSTRACT

RATIONALE: Traditionally, dissolved organic carbon (DOC) stable isotope analysis (SIA) is performed using either offline sample preparation followed by elemental analyzer/isotope ratio mass spectrometry (EA/IRMS) or a wet chemical oxidation (WCO)-based device coupled to an isotope ratio mass spectrometer. The first method is time-consuming and laborious. The second involves the risks of underestimation of DOC concentration and isotopic fractionation due to incomplete oxidation. The development of an analytical method for accurate and sensitive DOC SIA is described in this study. METHODS: A high-temperature combustion (HTC) system improves upon traditional methods. A novel total organic carbon (TOC) system, specially designed for SIA, was coupled to an isotope ratio mass spectrometer. An integrated purge and trap technique (peak focusing), flexible injection volume (0.05-3 mL), favorable carrier gas flow, modified ash crucible, new design of combustion tube and optimized drying system were used to achieve the necessary performance. RESULTS: The system can reliably measure concentrations up to 1000 mgC/L. Compounds resistant to oxidation, such as barbituric acid, melamine and humic acid, were analyzed with recovery rates of 100 ± 1% proving complete oxidation. In this initial testing, the δ(13) C values of these compounds were determined with precision and trueness of ≤ 0.2‰ even with 3.5% salinity. Further tests with samples with low DOC concentrations resulted in LOQSIA method values of 0.5 mgC/L and 0.2 mgC/L for LOQSIA instr , considering an accuracy of ± 0.5‰ as acceptable. CONCLUSIONS: The novel HTC system coupled to an isotope ratio mass spectrometer resulted in significantly improved sensitivity. The system is suitable for salt-containing liquids and compounds that are resistant to oxidation, and it offers a large concentration range. A second paper (which follows this one in this issue) will present a more comprehensive assessment of the analytical performance with a broad set of solutions and real samples. This highly efficient TOC stable isotopic analyzer will probably open up new possibilities in biogeochemical carbon cycle research.


Subject(s)
Carbon Isotopes/analysis , Humic Substances/analysis , Mass Spectrometry/methods , Rivers/chemistry , Seawater/chemistry , Equipment Design , Hot Temperature , Reproducibility of Results , Sensitivity and Specificity
6.
Rapid Commun Mass Spectrom ; 28(23): 2574-86, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25366404

ABSTRACT

RATIONALE: Dissolved organic carbon (DOC) plays an important role in carbon cycling, making precise and routine measurement of δ(13)C values and DOC concentration highly desirable. A new promising system has been developed for this purpose. However, broad-scale application of this new technique requires an in-depth assessment of analytical performance, and this is described here. METHODS: A high-temperature combustion Total Organic Carbon analyzer was interfaced with continuous flow isotope ratio mass spectrometry (TOC/IRMS) for the simultaneous analysis of the bulk DOC concentration and δ(13)C signature. The analytical performance (precision, memory effects, linearity, volume/concentration effects, accuracy) was thoroughly evaluated, including realistic and challenging conditions such as low DOC concentrations and natural DOC. RESULTS: High precision (standard deviation, SD predominantly ≤ 0.15 ‰) and accuracy (R(2) = 0.9997) were achieved for the δ(13)C analysis of a broad diversity of DOC solutions. Simultaneously, good results were obtained for the measurement of DOC concentration. Assessment of natural abundance and slightly (13)C-enriched DOC, a wide range of concentrations (~0.2-150 mgC/L) and injection volumes (0.05-3 mL), demonstrated minor/negligible memory effects, good linearity and flexible usage. Finally, TOC/IRMS was successfully applied to determine low DOC concentrations (<2 mgC/L) and DOC from diverse terrestrial, freshwater and marine environments (SD ≤ 0.23 ‰). CONCLUSIONS: TOC/IRMS enables fast and reliable measurement of DOC concentrations and δ(13)C values in aqueous samples, without pre-concentration and freeze-drying. Further investigations should focus on complex, saline matrices and very low DOC concentrations, to achieve a potential lower limit of 0.2 mgC/L. Thus, TOC/IRMS will give DOC research in terrestrial and aquatic environments a huge impulse with high-resolution, routine δ(13)C analysis.


Subject(s)
Carbon Isotopes/analysis , Fresh Water/chemistry , Mass Spectrometry/methods , Soil/chemistry , Hot Temperature , Limit of Detection , Linear Models , Plant Extracts/chemistry , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...