Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters










Publication year range
1.
Small Methods ; 8(1): e2300833, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37806773

ABSTRACT

Solid-state sodium ion conductors are crucial for the next generation of all-solid-state sodium batteries with high capacity, low cost, and improved safety. Sodium closo-carbadodecaborate (NaCB11 H12 ) is an attractive Na-ion conductor owing to its high thermal, electrochemical, and interfacial stability. Mechanical milling has recently been shown to increase conductivity by five orders of magnitude at room temperature, making it appealing for application in all-solid-state sodium batteries. Intriguingly, milling longer than 2 h led to a significant decrease in conductivity. In this study, X-ray Raman scattering (XRS) spectroscopy is used to probe the origin of the anomalous impact of mechanical treatment on the ionic conductivity of NaCB11 H12 . The B, C, and Na K-edge XRS spectra are successfully measured for the first time, and ab initio calculations are employed to interpret the results. The experimental and computational results reveal that the decrease in ionic conductivity upon prolonged milling is due to the increased proximity of Na to the CB11 H12 cage, caused by severe distortion of the long-range structure. Overall, this work demonstrates how the XRS technique, allowing investigation of low Z elements such as C and B in the bulk, can be used to acquire valuable information on the electronic structure of solid electrolytes and battery materials in general.

2.
J Mater Sci ; 58(17): 7398-7406, 2023.
Article in English | MEDLINE | ID: mdl-37159820

ABSTRACT

Hydroborates are an emerging class of solid electrolytes for all-solid-state batteries. Here, we investigate the impact of pressure on the crystal structure and ionic conductivity of a close-hydroborate salt consisting of Na2B10H10 and Na2B12H12. Two Na2B10H10:Na2B12H12 ratios were studied, 1:1 and 1:3. The anions of the as-synthesized powder with 1:1 ratio crystallize in a single face-centered cubic phase, while the anions of the powder with 1:3 ratio crystallize in a single monoclinic phase. After applying pressure to densify the powder into a pellet, a partial phase transformation into a body-centered cubic (BCC) phase is observed for both ratios. The BCC content saturates at 50 weight percent (wt%) at 500 MPa for the 1:1 ratio and at 77 wt% at 1000 MPa for the 1:3 sample. The room temperature sodium-ion conductivity follows an analogous trend. For the 1:1 ratio, it increases from 2 × 10-4 Scm-1 at 10 wt% BCC content to about 1.0 × 10-3 Scm-1 at 50 wt% BCC content. For the 1:3 ratio, it increases from 1.3 × 10-5 Scm-1 at 11.9 wt% BCC to 8.1 × 10-4 Scm-1 at 71 wt% BCC content. Our results show that pressure is a prerequisite to achieve high sodium-ion conductivity by formation of the highly conductive BCC phase. Supplementary Information: The online version contains supplementary material available at 10.1007/s10853-022-08121-8.

3.
Molecules ; 28(5)2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36903543

ABSTRACT

Thermal polymorphism in the alkali-metal salts incorporating the icosohedral monocarba-hydridoborate anion, CB11H12-, results in intriguing dynamical properties leading to superionic conductivity for the lightest alkali-metal analogues, LiCB11H12 and NaCB11H12. As such, these two have been the focus of most recent CB11H12- related studies, with less attention paid to the heavier alkali-metal salts, such as CsCB11H12. Nonetheless, it is of fundamental importance to compare the nature of the structural arrangements and interactions across the entire alkali-metal series. Thermal polymorphism in CsCB11H12 was investigated using a combination of techniques: X-ray powder diffraction; differential scanning calorimetry; Raman, infrared, and neutron spectroscopies; and ab initio calculations. The unexpected temperature-dependent structural behavior of anhydrous CsCB11H12 can be potentially justified assuming the existence of two polymorphs with similar free energies at room temperature: (i) a previously reported, ordered R3 polymorph stabilized upon drying and transforming first to R3c symmetry near 313 K and then to a similarly packed but disordered I43d polymorph near 353 K and (ii) a disordered Fm3 polymorph that initially appears from the disordered I43d polymorph near 513 K along with another disordered high-temperature P63mc polymorph. Quasielastic neutron scattering results indicate that the CB11H12- anions in the disordered phase at 560 K are undergoing isotropic rotational diffusion, with a jump correlation frequency [1.19(9) × 1011 s-1] in line with those for the lighter-metal analogues.

4.
Inorg Chem ; 61(32): 12708-12718, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35917192

ABSTRACT

A new type of hybrid compound, combining properties of MOFs and borohydrides, was synthesized solvothermally using Mg(BH4)2 and imidazole as precursors. Material in the form of acetonitrile solvate with formula [Mg3{(Im)BH2(Im)}6(ImH)6]·CH3CN crystallizes in the space group R3̅, having the unit cell parameters a = 15.1942(2) Å and c = 28.3157(3) Å as determined by single crystal X-ray diffraction. The structure was further investigated by solid-state NMR and DFT quantum chemical calculations. The main feature of the structure, reported here for the first time, is a linear trinuclear complex, where octahedrally nitrogen-coordinated Mg2+ ions are bridged with {(Im)BH2(Im)}- units, forming inside voids of 4.6 Å in diameter between the magnesium ions. Polar intermolecular interactions hold the molecules in a dense rhombohedral stacking, where a disordered acetonitrile molecule plays a cohesive role. The compound is stable in air and upon heating to about 160 °C. Using an alternative synthesis method from an imidazole melt, an imidazole solvate with the formula [Mg3{(Im)BH2(Im)}6(ImH)6]·ImH and a very similar crystal structure to acetonitrile solvate was prepared. It is stable up to 220 °C. Upon further heating, it transformed into a layered structure with the formula Mg(Im3BH)2, space group P3̅1c, and unit cell parameters a = 8.7338(9) Å and c = 17.621(2) Å determined by synchrotron powder diffraction. Besides its structural novelty, two types of potentially reactive hydrogens, bonded to boron and nitrogen in the same molecule, make the material highly interesting for future investigations in the fields of energy storage applications.

5.
J Mater Sci ; 57(25): 11563-11581, 2022.
Article in English | MEDLINE | ID: mdl-35789923

ABSTRACT

This work describes temperature-induced crystallization processes and reaction mechanisms occurring in the borohydride-imidazolate system. In the course of thermal evolution, crystal structures of two novel bimetallic imidazolates AMnIm3 (A = Na, K) were solved using synchrotron radiation powder diffraction data. Both the alkali metal cation and the Mn cations exhibit distorted octahedral coordination while each imidazolate is surrounded by two alkali metal and two manganese atoms. Extensive study of the thermal expansion behaviour revealed that the expansion of the bimetallic imidazolates does not proceed uniformly over the entire temperature range but rather abruptly changes from a colossal negative to a moderate positive volume expansion. Such behaviour is caused by the coherent intergrowth of the coexisting phases which form a composite, a positive lattice mismatch and a tensile strain during the coexistence of NaMIm3 (M = Mg and Mn) and NaIm or HT-NaIm. Such coherent coalescence of two materials opens the possibility for targeted design of zero thermal expansion materials. Graphical abstract: Crystal structures of AMnIm3 (A = Na, K) were determined. Coherently intergrown NaMIm3/NaIm (M = Mg, Mn) present colossal negative thermal expansion. Supplementary Information: The online version contains supplementary material available at 10.1007/s10853-022-07360-z.

6.
Inorg Chem ; 61(15): 5813-5823, 2022 Apr 18.
Article in English | MEDLINE | ID: mdl-35363480

ABSTRACT

The crystal structures of three thermal polymorphs (I, II, and III) for each isomer of closo-dicarbadodecaboranes C2B10H12 (ortho, meta, and para) have been determined by combining synchrotron radiation X-ray powder diffraction and density functional theory calculations. The structures are in agreement with previous calorimetric and spectroscopic studies. The difference between rotatory phases (plastic crystals) I and II lies in isotropic rotations in the former and anisotropic rotations of the icosahedral clusters in the latter. Phase I is the cubic close packing (ccp) of rotating closo-molecules C2B10H12 in the space group Fm3̅. Phase II is the ccp of rotating closo-molecules C2B10H12 in the cubic space group Pa3̅. The preferred rotational axis in II varies with the isomer. The ordered phases III are orthorhombic (meta) or monoclinic (ortho and para) deformations of the cubic unit cell of the disordered phases I and II. The ordering in the phase III of the ortho-isomer carrying the biggest electrical dipole moment creates a twofold superstructure w.r.t. the cubic unit cell. The thermal polymorphism for C2B10H12 and related metal salts can be explained by division of the cohesive intercluster interactions into two categories (i) dispersive cohesive interaction with additional Coulombic components in the metal salts and (ii) anisotropic local interaction resulting from nonuniform charge distribution around icosahedral clusters. The local interactions are averaged out by thermally activated cluster dynamics (rotations and rotational jumps) which effectively increase the symmetry of the cluster. The C2B10H12 molecules resist at least as well as the CB11H12- anion to the oxidation, and both clusters form easily a mixed compound. This allows designing solid electrolytes such as Nax(CB11H12)x(C2B10H12)1-x, where the cation content may be varied and the temperature of transition into the disordered conducting phase is decreased.

7.
ACS Appl Mater Interfaces ; 13(51): 61346-61356, 2021 Dec 29.
Article in English | MEDLINE | ID: mdl-34927409

ABSTRACT

The body-centered cubic (bcc) polymorph of NaCB11H12 has been stabilized at room temperature by high-energy mechanical milling. Temperature-dependent electrochemical impedance spectroscopy shows an optimum at 45-min milling time, leading to an rt conductivity of 4 mS cm-1. Mechanical milling suppresses an order-disorder phase transition in the investigated temperature range. Nevertheless, two main regimes can be identified, with two clearly distinct activation energies. Powder X-ray diffraction and 23Na solid-state NMR reveal two different Na+ environments, which are partially occupied, in the bcc polymorph. The increased number of available sodium sites w.r.t. ccp polymorph raises the configurational entropy of the bcc phase, contributing to a higher ionic conductivity. Mechanical treatment does not alter the oxidative stability of NaCB11H12. Electrochemical test on a symmetric cell (Na|NaCB11H12|Na) without control of the stack pressure provides a critical current density of 0.12 mA cm-2, able to fully charge/discharge a 120 mA h g-1 specific capacity positive electrode at the rate of C/2.

8.
Inorg Chem ; 60(15): 10943-10957, 2021 Aug 02.
Article in English | MEDLINE | ID: mdl-34251804

ABSTRACT

Metal closo-borates and their derivatives have shown promise in several fields of application from cancer therapy to solid-state electrolytes partly owing to their stability in aqueous solutions and high thermal stability. We report the synthesis and structural analysis of α- and ß-CaB10H10, which are structurally and energetically similar, both showing a tetrahedral coordination of Ca2+ to four closo-borate cages. The main distinctions between the α- and ß-polymorph are found in the crystal system (monoclinic or orthorhombic), topology (wurtzite or cag), and the degree of displacement of Ca2+ from the center of the coordination tetrahedron. Neutron vibrational spectroscopy measurements further revealed distinct perturbations in the cation-anion interactions arising from the different crystal structures. We also synthesized and structurally investigated five stoichiometric hydrates, CaB10H10·xH2O, x = 1, 4, 5, 6, and 7, and discovered an order-disorder polymorphic transition, α- to ß-CaB10H10·6H2O. The hydrates reveal a rich structural diversity with ordered structures, CaB10H10·xH2O, x = 1, 4, 5, 6, and 7, as well as disordered structures, x = 6 and 8. The latter allow for a continuum of compositions within 7-8 molecules of crystal water. The DFT-optimized experimental crystal structures reveal complex networks of three types of hydrogen interactions: dihydrogen bonds, B-Hδ-···+δH-O; hydrogen-hydrogen interactions, B-H···H-B; and hydrogen bonds, O-Hδ+···-δO-H. A rather short B-H···H-B (2.14 Å) interaction is observed for CaB10H10·5H2O, which is locally stabilized by four hydrogen bonds.

9.
ACS Appl Energy Mater ; 4(2): 1228-1236, 2021 Feb 22.
Article in English | MEDLINE | ID: mdl-33644698

ABSTRACT

LiBH4 has been widely studied as a solid-state electrolyte in Li-ion batteries working at 120 °C due to the low ionic conductivity at room temperature. In this work, by mixing with MgO, the Li-ion conductivity of LiBH4 has been improved. The optimum composition of the mixture is 53 v/v % of MgO, showing a Li-ion conductivity of 2.86 × 10-4 S cm-1 at 20 °C. The formation of the composite does not affect the electrochemical stability window, which is similar to that of pure LiBH4 (about 2.2 V vs Li+/Li). The mixture has been incorporated as the electrolyte in a TiS2/Li all-solid-state Li-ion battery. A test at room temperature showed that only five cycles already resulted in cell failure. On the other hand, it was possible to form a stable solid electrolyte interphase by applying several charge/discharge cycles at 60 °C. Afterward, the battery worked at room temperature for up to 30 cycles with a capacity retention of about 80%.

10.
Int J Pharm ; 589: 119783, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32827674

ABSTRACT

Osteoarthritis (OA), the most common form of arthritis, is characterized by chronic inflammation, degeneration of articular cartilage and whole joints. Local delivery by intra-articular (IA) injection of small molecules is an established treatment to relieve pain and improve joint motion, requiring month-lasting release of therapeutic drug doses. We incorporated anti-inflammatory drug celecoxib in poly (D, L-lactic acid) microparticles using two spray-drying approaches - either as a solid drug solution or embedded as milled nano drug. Differential scanning calorimetry, X-ray powder diffraction, electron microscopy and in vitro drug release allowed comparison of the microparticles. Both types resulted in spherical particles ranging from 20 to 40 µm mean size, with high drug loadings (10% to 50% w/w) and entrapment efficiencies > 80%. However, after 90 days, in vitro celecoxib release from nano drug embedded microparticles presented a significantly slower release in comparison to drug in solution microparticles, attributed to the presence of stabilized amorphous drug. No cytotoxicity was observed in human articular synoviocytes and PGE2 release was fully suppressed at low doses of both microparticulate systems. This study provides techniques to release high drug loads over months in a tunable manner, providing valuable options for the IA management of osteoarthritis.


Subject(s)
Lactic Acid , Osteoarthritis , Celecoxib , Drug Liberation , Humans , Inflammation/drug therapy , Osteoarthritis/drug therapy , Particle Size
11.
Inorg Chem ; 59(17): 12733-12747, 2020 Sep 08.
Article in English | MEDLINE | ID: mdl-32799455

ABSTRACT

Metal borohydrides are a fascinating and continuously expanding class of materials, showing promising applications within many different fields of research. This study presents 17 derivatives of the hydrogen-rich ammonium borohydride, NH4BH4, which all exhibit high gravimetric hydrogen densities (>9.2 wt % of H2). A detailed insight into the crystal structures combining X-ray diffraction and density functional theory calculations exposes an intriguing structural variety ranging from three-dimensional (3D) frameworks, 2D-layered, and 1D-chainlike structures to structures built from isolated complex anions, in all cases containing NH4+ countercations. Dihydrogen interactions between complex NH4+ and BH4- ions contribute to the structural diversity and flexibility, while inducing an inherent instability facilitating hydrogen release. The thermal stability of the ammonium metal borohydrides, as a function of a range of structural properties, is analyzed in detail. The Pauling electronegativity of the metal, the structural dimensionality, the dihydrogen bond length, the relative amount of NH4+ to BH4-, and the nearest coordination sphere of NH4+ are among the most important factors. Hydrogen release usually occurs in three steps, involving new intermediate compounds, observed as crystalline, polymeric, and amorphous materials. This research provides new opportunities for the design and tailoring of novel functional materials with interesting properties.

12.
Phys Chem Chem Phys ; 22(17): 9204-9209, 2020 May 07.
Article in English | MEDLINE | ID: mdl-32232248

ABSTRACT

Light weight and cheap electrolytes with fast multi-valent ion conductivity can pave the way for future high-energy density solid-state batteries, beyond the lithium-ion battery. Here we present the mechanism of Mg-ion conductivity of monoammine magnesium borohydride, Mg(BH4)2·NH3. Density functional theory calculations (DFT) reveal that the neutral molecule (NH3) in Mg(BH4)2·NH3 is exchanged between the lattice and interstitial Mg2+ facilitated by a highly flexible structure, mainly owing to a network of di-hydrogen bonds, N-Hδ+-δH-B and the versatile coordination of the BH4- ligand. DFT shows that di-hydrogen bonds in inorganic matter and hydrogen bonds in bio-materials have similar bond strengths and bond lengths. As a result of the high structural flexibiliy, the Mg-ion conductivity is dramatically improved at moderate temperature, e.g. σ(Mg2+) = 3.3 × 10-4 S cm-1 at T = 80 °C for Mg(BH4)2·NH3, which is approximately 8 orders of magnitude higher than that of Mg(BH4)2. Our results may inspire a new approach for the design and discovery of unprecedented multivalent ion conductors.

13.
Chem Commun (Camb) ; 56(28): 3971-3974, 2020 Apr 11.
Article in English | MEDLINE | ID: mdl-32152608

ABSTRACT

Hemiammine lithium borohydride, LiBH4·1/2NH3, is characterized and a new Li+ conductivity mechanism is identified. It exhibits a Li+ conductivity of 7 × 10-4 S cm-1 at 40 °C in the solid state and 3.0 × 10-2 S cm-1 at 55 °C after melting. The molten state of LiBH4·1/2NH3 has a high viscosity and can be mechanically stabilized in nano-composites with inert metal oxides and other hydrides making it a promising battery electrolyte.

14.
Inorg Chem ; 58(10): 6927-6933, 2019 May 20.
Article in English | MEDLINE | ID: mdl-31050419

ABSTRACT

The first bimetallic imidazolates containing alkali and alkaline earth metals, NaMgIm3 and KMgIm3, respectively, are prepared by mechanochemical synthesis and are reported in this paper. NaMgIm3 has been prepared by the reaction between NaIm and Mg(BH4)2 as well as directly from NaIm and MgIm2. Structural evolution and thermal stability were followed by an in situ high-temperature X-ray powder diffraction experiment utilizing synchrotron radiation. In both compounds, the imidazolate ligand is connected to four metal cations forming a complex three-dimensional network with channels running along the c-direction. NaMgIm3 and KMgIm3 are the first members of a new family of imidazolate frameworks with stp topology. The formation of mixed-alkali-metal imidazolate compounds is thermodynamically controlled. LiIm and MgIm2 have not yielded a mixed-metal compound, while KIm reacts swiftly and forms KMgIm3.

15.
Dalton Trans ; 47(16): 5843-5849, 2018 Apr 24.
Article in English | MEDLINE | ID: mdl-29648562

ABSTRACT

Nickel closo-dodecaborate NiB12H12 was prepared by mechanosynthesis (ball milling) of mixtures of Na2B12H12 + NiCl2 followed by hydration and drying under dynamic vacuum. The crystal structures of hydrated and anhydrous closo-dodecaborates were characterized by temperature dependent synchrotron radiation X-ray powder diffraction, ab initio calculations, thermal analysis and infrared spectroscopy. Three different water containing complexes were found: a homoleptic octahedral complex in Ni(H2O)6B12H12 crystallizing in two different deformation variants of a complex centred closo-dodecaborate cube, and a heteroleptic octahedral complex in Ni(H2O)4B12H12 containing four water molecules and two hydrogens and centring also a deformed closo-dodecaborate cube. Anhydrous nickel closo-dodecaborate was obtained by drying the hydrated sample under dynamic vacuum. It crystallizes with bcc packing of B12H122- anions and Ni2+ is disordered close to the triangular face of the tetrahedral interstice coordinated by a H5 square pyramid.

16.
Inorg Chem ; 57(6): 3197-3205, 2018 Mar 19.
Article in English | MEDLINE | ID: mdl-29512391

ABSTRACT

The crystal structure of a mixed amide-imide phase, RbMgND2ND, has been solved in the orthorhombic space group Pnma ( a = 9.55256(31), b = 3.70772(11) and c = 10.08308(32) Å). A new metal amide-hydride solid solution, Rb(NH2) xH(1- x), has been isolated and characterized in the entire compositional range. The profound analogies, as well as the subtle differences, with the crystal chemistry of KMgND2ND and K(NH2) xH1- x are thoroughly discussed. This approach suggests that the comparable performances obtained using K- and Rb-based additives for the Mg(NH2)2- 2LiH and 2LiN H2-MgH2 hydrogen storage systems are likely to depend on the structural similarities of possible reaction products and intermediates.

17.
Anal Chem ; 89(24): 13176-13181, 2017 12 19.
Article in English | MEDLINE | ID: mdl-29131937

ABSTRACT

The renewed interest of mechanochemistry as an ecofriendly synthetic route has inspired original methodologies to probe reactions, with the aim to rationalize unknown mechanisms. Recently, Friscic et al. ( Nat. Chem. 2013 , 5 , 66 - 73 , DOI: 10.1038/nchem.1505 ) monitored the progress of milling reactions by synchrotron X-ray powder diffraction (XRPD). For the first time, it was possible to acquire directly information during a mechanochemical process. This new methodology is still in its early stages, and its development will definitively transform the fundamental understanding of mechanochemistry. A new type of in situ ball mill setup has been developed at the Materials Science beamline (Swiss Light Source, Paul Scherrer Institute, Switzerland). Its particular geometry, described here in detail, results in XRPD data displaying significantly lower background and much sharper Bragg peaks, which in turn allow more sophisticated analysis of mechanochemical processes, extending the limits of the technique.

18.
ChemSusChem ; 10(23): 4725-4734, 2017 12 08.
Article in English | MEDLINE | ID: mdl-28981990

ABSTRACT

Metal borohydrides are intensively researched as high-capacity hydrogen storage materials. Aluminum is a cheap, light, and abundant element and Al3+ can serve as a template for reversible dehydrogenation. However, Al(BH4 )3 , containing 16.9 wt % of hydrogen, has a low boiling point, is explosive on air and has poor storage stability. A new family of mixed-cation borohydrides M[Al(BH4 )4 ], which are all solid under ambient conditions, show diverse thermal decomposition behaviors: Al(BH4 )3 is released for M=Li+ or Na+ , whereas heavier derivatives evolve hydrogen and diborane. NH4 [Al(BH4 )4 ], containing both protic and hydridic hydrogen, has the lowest decomposition temperature of 35 °C and yields Al(BH4 )3 ⋅NHBH and hydrogen. The decomposition temperatures, correlated with the cations' ionic potential, show that M[Al(BH4 )4 ] species are in the most practical stability window. This family of solids, with convenient and versatile properties, puts aluminum borohydride chemistry in the mainstream of hydrogen storage research, for example, for the development of reactive hydride composites with increased hydrogen content.


Subject(s)
Borohydrides/chemistry , Hydrogen/chemistry , Aluminum/chemistry , Phase Transition , Temperature
19.
Dalton Trans ; 46(39): 13421-13431, 2017 Oct 10.
Article in English | MEDLINE | ID: mdl-28948259

ABSTRACT

Formation, stability and properties of new metal borohydrides within RE(BH4)3-NaBH4, RE = Ce, Pr, Er or Gd is investigated. Three new bimetallic sodium rare-earth borohydrides, NaCe(BH4)4, NaPr(BH4)4 and NaEr(BH4)4 are formed based on an addition reaction between NaBH4 and halide free rare-earth metal borohydrides RE(BH4)3, RE = Ce, Pr, Er. All the new compounds crystallize in the orthorhombic crystal system. NaCe(BH4)4 has unit cell parameters of a = 6.8028(5), b = 17.5181(13), c = 7.2841(5) Å and space group Pbcn. NaPr(BH4)4 is isostructural to NaCe(BH4)4 with unit cell parameters of a = 6.7617(2), b = 17.4678(7), c = 7.2522(3) Å. NaEr(BH4)4 crystallizes in space group Cmcm with unit cell parameters of a = 8.5379(2), b = 12.1570(4), c = 9.1652(3) Å. The structural relationships, also to the known RE(BH4)3, are discussed in detail and related to the stability and synthesis conditions. Heat treatment of NaBH4-Gd(BH4)3 mixture forms an unstable amorphous phase, which decomposes after one day at RT. NaCe(BH4)4 and NaPr(BH4)4 show reversible hydrogen storage capacity of 1.65 and 1.04 wt% in the fourth H2 release, whereas that of NaEr(BH4)4 continuously decreases. This is mainly assigned to formation of metal hydrides and possibly slower formation of sodium borohydride. The dehydrogenated state clearly contains rare-earth metal borides, which stabilize boron in the dehydrogenated state.

20.
Inorg Chem ; 56(9): 5006-5016, 2017 May 01.
Article in English | MEDLINE | ID: mdl-28398061

ABSTRACT

Three different types of anion packing, i.e., hexagonal close packed (hcp), cubic close packed (ccp), and body centered cubic (bcc), are investigated experimentally and with ab initio calculations in the model system Na2B12H12. Solvent free and water assisted mechanical grinding provide polycrystalline samples for temperature-dependent synchrotron radiation X-ray powder diffraction and electrochemical impedance spectroscopy. It is shown that among the common close packed lattices, the hcp anionic backbone creates very favorable conditions for three-dimensional ionic conduction pathways, comprised of O-O, T-T, and T-O-T (O for octahedral, T for tetrahedral) cation hops. The hcp lattice is stable with respect to ccp and bcc lattices only at higher volumes per formula unit, which is achieved either by cationic substitution with larger cations or partial substitution of hydrogen by iodine on the closo-anion. It is found that the partial cationic substitution of sodium with lithium, potassium, or cesium does not lead to enhanced conductivity due to the obstruction of the conduction pathway by the larger cation located on the octahedral site. Substitution on the closo-anion itself shows remarkable positive effects, the ionic conductivity of Na2B12H12-xIx reaching values of close to 10-1 S cm-1 at a rather low temperature of 360 K. While the absolute value of σ is comparable to that of NaCB11H12, the temperature at which it is attained is approximately 20 K lower. The activation energy of 140 meV is determined from the Arrhenius relation and among the lowest ever reported for a Na-conducting solid.

SELECTION OF CITATIONS
SEARCH DETAIL
...