Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Breast ; 75: 103721, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38554551

ABSTRACT

Germline CHEK2 pathogenic variants confer an increased risk of female breast cancer (FBC). Here we describe a recurrent germline intronic variant c.1009-118_1009-87delinsC, which showed a splice acceptor shift in RNA analysis, introducing a premature stop codon (p.Tyr337PhefsTer37). The variant was found in 21/10,204 (0.21%) Czech FBC patients compared to 1/3250 (0.03%) controls (p = 0.04) and in 4/3639 (0.11%) FBC patients from an independent German dataset. In addition, we found this variant in 5/2966 (0.17%) Czech (but none of the 443 German) ovarian cancer patients, three of whom developed early-onset tumors. Based on these observations, we classified this variant as likely pathogenic.


Subject(s)
Breast Neoplasms , Checkpoint Kinase 2 , Genetic Predisposition to Disease , Germ-Line Mutation , Introns , RNA Splicing , Humans , Female , Checkpoint Kinase 2/genetics , Breast Neoplasms/genetics , Genetic Predisposition to Disease/genetics , Introns/genetics , RNA Splicing/genetics , Czech Republic , Adult , Middle Aged , RNA Precursors/genetics , Germany , Ovarian Neoplasms/genetics
2.
Oncol Lett ; 25(6): 216, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37153042

ABSTRACT

Endometrial cancer (EC) is the most common gynecological malignancy in developed countries. The present study aimed to determine the frequency of germline pathogenic variants (PV) in patients with EC. In this multicenter retrospective cohort study, germline genetic testing (GGT) was performed in 527 patients with EC using a next generation sequencing panel targeting 226 genes, including 5 Lynch syndrome (LS) and 14 hereditary breast and ovarian cancer (HBOC) predisposition genes, and 207 candidate predisposition genes. Gene-level risks were calculated using 1,662 population-matched controls (PMCs). Patients were sub-categorized to fulfill GGT criteria for LS, HBOC, both or none. A total of 60 patients (11.4%) carried PV in LS (5.1%) and HBOC (6.6%) predisposition genes, including two carriers of double PV. PV in LS genes conferred a significantly higher EC risk [odds ratio (OR), 22.4; 95% CI, 7.8-64.3; P=1.8×10-17] than the most frequently altered HBOC genes BRCA1 (OR, 3.9; 95% CI, 1.6-9.5; P=0.001), BRCA2 (OR, 7.4; 95% CI, 1.9-28.9; P=0.002) and CHEK2 (OR, 3.2; 95% CI, 1.0-9.9; P=0.04). Furthermore, >6% of patients with EC not fulfilling LS or HBOC GGT indication criteria carried a PV in a clinically relevant gene. Carriers of PV in LS genes had a significantly lower age of EC onset than non-carriers (P=0.01). Another 11.0% of patients carried PV in a candidate gene (the most frequent were FANCA and MUTYH); however, their individual frequencies did not differ from PMCs (except for aggregated frequency of loss-of-function variants in POLE/POLD1; OR, 10.44; 95% CI, 1.1-100.5; P=0.012). The present study demonstrated the importance of GGT in patients with EC. The increased risk of EC of PV carriers in HBOC genes suggests that the diagnosis of EC should be included in the HBOC GGT criteria.

3.
Cancers (Basel) ; 12(4)2020 Apr 13.
Article in English | MEDLINE | ID: mdl-32295079

ABSTRACT

Ovarian cancer (OC) is the deadliest gynecologic malignancy with a substantial proportion of hereditary cases and a frequent association with breast cancer (BC). Genetic testing facilitates treatment and preventive strategies reducing OC mortality in mutation carriers. However, the prevalence of germline mutations varies among populations and many rarely mutated OC predisposition genes remain to be identified. We aimed to analyze 219 genes in 1333 Czech OC patients and 2278 population-matched controls using next-generation sequencing. We revealed germline mutations in 18 OC/BC predisposition genes in 32.0% of patients and in 2.5% of controls. Mutations in BRCA1/BRCA2, RAD51C/RAD51D, BARD1, and mismatch repair genes conferred high OC risk (OR > 5). Mutations in BRIP1 and NBN were associated with moderate risk (both OR = 3.5). BRCA1/2 mutations dominated in almost all clinicopathological subgroups including sporadic borderline tumors of ovary (BTO). Analysis of remaining 201 genes revealed somatic mosaics in PPM1D and germline mutations in SHPRH and NAT1 associating with a high/moderate OC risk significantly; however, further studies are warranted to delineate their contribution to OC development in other populations. Our findings demonstrate the high proportion of patients with hereditary OC in Slavic population justifying genetic testing in all patients with OC, including BTO.

4.
Klin Onkol ; 32(Supplementum2): 123-127, 2019.
Article in English | MEDLINE | ID: mdl-31409088

ABSTRACT

DICER1 syndrome is an inherited disorder that increases the risk of different types of malignant and benign tumors. The syndrome is caused by mutations in the DICER1 gene, which is located on the long arm of chromosome 14, region q32.13. Patients with DICER1 syndrome commonly develop pleuropulmonary blastoma (PPB), multinodular goiter, ovarian Sertoli-Leydig cell tumors, and/or other types of tumors. In approximately 35% of families with children manifesting PPB, further (and rather rare) malignancies may be observed, including cystic nephroma, nodular dysplasia of the thyroid gland, medulloepithelioma of the iris, embryonal rhabdomyosarcoma botryoid type, nasal epithelial hamartoma, pituitary blastoma, and/or pineoblastoma. Large studies report a high variability of tumors associated with DICER1. DICER1 syndrome, which is associated with an inherited predisposition to tumors, is inherited in an autosomal dominant pattern. Symptoms of DICER1 syndrome may vary, even within families. Preventive screening of carriers with causative mutations is complicated. Follow-up is undertaken as recommended by the 2016 International PPB Register. This work was supported by grant of Ministry of Health of the Czech Republic AZV 16-3329A. The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study. The Editorial Board declares that the manuscript met the ICMJE recommendation for biomedical papers. Submitted: 4. 6. 2019 Accepted: 6. 6. 2019.


Subject(s)
DEAD-box RNA Helicases/genetics , Neoplastic Syndromes, Hereditary/genetics , Ribonuclease III/genetics , Genetic Predisposition to Disease , Humans , Mutation
5.
Biochem J ; 392(Pt 3): 625-32, 2005 Dec 15.
Article in English | MEDLINE | ID: mdl-16083427

ABSTRACT

The biogenesis of eukaryotic COX (cytochrome c oxidase) requires several accessory proteins in addition to structural subunits and prosthetic groups. We have analysed the assembly state of COX and SCO2 protein levels in various tissues of six patients with mutations in SCO2 and SURF1. SCO2 is a copper-binding protein presumably involved in formation of the Cu(A) centre of the COX2 subunit. The function of SURF1 is unknown. Immunoblot analysis of native gels demonstrated that COX holoenzyme is reduced to 10-20% in skeletal muscle and brain of SCO2 and SURF1 patients and to 10-30% in heart of SCO2 patients, whereas liver of SCO2 patients' contained normal holoenzyme levels. The steady-state levels of mutant SCO2 protein ranged from 0 to 20% in different SCO2 patient tissues. In addition, eight distinct COX subcomplexes and unassembled subunits were found, some of them identical with known assembly intermediates of the human enzyme. Heart, brain and skeletal muscle of SCO2 patients contained accumulated levels of the COX1.COX4.COX5A subcomplex, three COX1-containing subcomplexes, a COX4.COX5A subcomplex and two subcomplexes composed of only COX4 or COX5A. The accumulation of COX1.COX4.COX5A subcomplex, along with the virtual absence of free COX2, suggests that the lack of the Cu(A) centre may result in decreased stability of COX2. The appearance of COX4.COX5A subcomplex indicates that association of these nucleus-encoded subunits probably precedes their addition to COX1 during the assembly process. Finally, the consequences of SCO2 and SURF1 mutations suggest the existence of tissue-specific functional differences of these proteins that may serve different tissue-specific requirements for the regulation of COX biogenesis.


Subject(s)
Electron Transport Complex IV/metabolism , Mutation/genetics , Proteins/genetics , Proteins/metabolism , Brain/enzymology , Carrier Proteins , Child, Preschool , Electron Transport Complex IV/biosynthesis , Electron Transport Complex IV/chemistry , Fibroblasts/enzymology , Gene Expression Regulation, Enzymologic , Humans , Infant , Liver/enzymology , Membrane Proteins , Mitochondrial Proteins , Molecular Chaperones , Muscle, Skeletal/enzymology , Myocardium/enzymology , Organ Specificity , Protein Subunits/chemistry , Protein Subunits/metabolism
6.
J Neurol Sci ; 223(2): 149-55, 2004 Aug 30.
Article in English | MEDLINE | ID: mdl-15337616

ABSTRACT

Inheritance and expression of mitochondrial DNA (mtDNA) mutations are crucial for the pathogenesis of Leber hereditary optic neuropathy (LHON). We have investigated the segregation and functional consequences of G3460A mtDNA mutation in 27 members of a three-generation family with LHON syndrome. Specific activity of respiratory chain complex I in platelets was reduced in average to 56%, but no direct correlation between the mutation load and its biochemical expression was found. Heteroplasmy in blood, platelets and hair follicles varied from 7% to 100%. Segregation pattern exhibited tissue specificity and influence of different nuclear backgrounds in four branches of the pedigree. Longitudinal analysis revealed a significant (p=0.02) decrease in blood mutation load. Although enzyme assay showed reduction of complex I activity, our results give additional support to the hypothesis that expression of LHON mutation depends on complex nuclear-mitochondrial interaction.


Subject(s)
DNA, Mitochondrial/genetics , Family Health , Optic Atrophy, Hereditary, Leber/genetics , Point Mutation , Alanine/genetics , Analysis of Variance , DNA Mutational Analysis/methods , DNA, Mitochondrial/blood , Female , Glycine/genetics , Humans , Longitudinal Studies , Male , NAD/blood , Optic Atrophy, Hereditary, Leber/blood , Oxidoreductases/blood , Pedigree , Rotenone
SELECTION OF CITATIONS
SEARCH DETAIL
...